Author
Listed:
- Stefan Krauter
(Paderborn University, EET-NEK, 33098 Paderborn, Germany)
- Jörg Bendfeld
(Paderborn University, EET-NEK, 33098 Paderborn, Germany)
Abstract
The market for microinverters is growing, especially in Europe. Driven by rising electricity prices and an easing in legislation since 2024, the number of mini-photovoltaic energy systems (mini-PVs) being installed is increasing substantially. Indoor and outdoor studies of microinverters have been carried out at Paderborn University since 2014. In the indoor lab, conversion efficiencies as a function of load have been measured with high accuracy and ranked according to Euro and CEC weightings; the latest rankings from 2024 are included in this paper. In the outdoor lab, energy yields have been measured using identical and calibrated crystalline silicon PV modules; until 2020, measurements were carried out using 215 W p modules. Because of increasing PV module power ratings, 360 W p modules were used from 2020 until 2024. In 2024, the test modules were upgraded to 410 W p modules, taking into account the increase from 600 W to 800 W of inverter power limits, which is suitable for simplified operation permission (“plug-in”) in many European countries within a homogenised legislation area for such mini-photovoltaic energy systems or “balcony power plants”. This legislation for simplified operation also covers overpowered mini-plants, although the maximum AC output remains limited to 800 W. Presently, yield assessments are being carried out in the outdoor lab, which will take at least a year to be valid and comparable. Kits consisting of PV modules, inverters, and mounting systems are also being evaluated. Yield rankings sometimes differ from efficiency rankings due to the use of different MPPT algorithms with different MPP approach speeds and accuracies. To accelerate yield assessment, we developed a novel, simple formula to determine energy yield for any module and inverter configuration, including overpowered systems. This is a linear approach, determined by just two coefficients, a and b, which are given for several inverters. To reduce costs, inverters will be integrated into the module frame or the module terminal box in the future.
Suggested Citation
Stefan Krauter & Jörg Bendfeld, 2024.
"Efficiency Ranking of Photovoltaic Microinverters and Energy Yield Estimations for Photovoltaic Balcony Power Plants,"
Energies, MDPI, vol. 17(22), pages 1-13, November.
Handle:
RePEc:gam:jeners:v:17:y:2024:i:22:p:5551-:d:1515467
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5551-:d:1515467. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.