IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5312-d1506490.html
   My bibliography  Save this article

Scalability and Replicability Analysis in Smart Grid Demonstration Projects: Lessons Learned and Future Needs

Author

Listed:
  • Ilaria Losa

    (Ricerca sul Sistema Energetico, 20134 Milano, Italy)

  • Rafael Cossent

    (Institute for Research in Technology (IIT), Universidad Pontificia Comillas, 28015 Madrid, Spain)

Abstract

This paper compares various approaches to the scalability and replicability analysis (SRA) of smart grid pilot projects, highlighting the need for a comprehensive SRA methodology as called for by the European Commission and International Energy Agency. This study addresses the need for a standardized SRA methodology and explores how three EU-funded projects—Platone, EUniversal, and IElectrix—adapted the general guidelines developed by the BRIDGE initiative. These guidelines provide recommendations for developing a comprehensive large-scale deployment analysis. The results show that while the guidelines are usable and flexible, project-specific conditions and data availability limitations—particularly in regulatory and technical analysis—can pose challenges. Some key recommendations to overcome these and facilitate future applications are identified. These include defining SRA methodologies and securing data-sharing agreements early. The lack of standardized approaches for presenting SRA results hampers cross-project comparison. Thus, creating an open-use case repository and updating the BRIDGE guidelines with more detailed examples, benchmarks, and reference networks is recommended. Additionally, linking SRA with cost–benefit analysis (CBA) is suggested in order to evaluate the commercial viability of smart grid solutions. The paper concludes that while the BRIDGE guidelines have proven to be fit for purpose, further developments are needed to facilitate their practical application in real-world projects.

Suggested Citation

  • Ilaria Losa & Rafael Cossent, 2024. "Scalability and Replicability Analysis in Smart Grid Demonstration Projects: Lessons Learned and Future Needs," Energies, MDPI, vol. 17(21), pages 1-35, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5312-:d:1506490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lukas Sigrist & Kristof May & Andrei Morch & Peter Verboven & Pieter Vingerhoets & Luis Rouco, 2016. "On Scalability and Replicability of Smart Grid Projects—A Case Study," Energies, MDPI, vol. 9(3), pages 1-19, March.
    2. Néstor Rodríguez-Pérez & Javier Matanza Domingo & Gregorio López López, 2024. "ICT Scalability and Replicability Analysis for Smart Grids: Methodology and Application," Energies, MDPI, vol. 17(3), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.
    2. Rodriguez-Calvo, Andrea & Cossent, Rafael & Frías, Pablo, 2018. "Scalability and replicability analysis of large-scale smart grid implementations: Approaches and proposals in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 1-15.
    3. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    4. Jan Kalbantner & Konstantinos Markantonakis & Darren Hurley-Smith & Raja Naeem Akram & Benjamin Semal, 2021. "P2PEdge: A Decentralised, Scalable P2P Architecture for Energy Trading in Real-Time," Energies, MDPI, vol. 14(3), pages 1-25, January.
    5. Monaco, Roberto & Bergaentzlé, Claire & Leiva Vilaplana, Jose Angel & Ackom, Emmanuel & Nielsen, Per Sieverts, 2024. "Digitalization of power distribution grids: Barrier analysis, ranking and policy recommendations," Energy Policy, Elsevier, vol. 188(C).
    6. Sergio Potenciano Menci & Julien Le Baut & Javier Matanza Domingo & Gregorio López López & Rafael Cossent Arín & Manuel Pio Silva, 2020. "A Novel Methodology for the Scalability Analysis of ICT Systems for Smart Grids Based on SGAM: The InteGrid Project Approach," Energies, MDPI, vol. 13(15), pages 1-24, July.
    7. Sergio Potenciano Menci & Ricardo J. Bessa & Barbara Herndler & Clemens Korner & Bharath-Varsh Rao & Fabian Leimgruber & André A. Madureira & David Rua & Fábio Coelho & João V. Silva & José R. Andrade, 2021. "Functional Scalability and Replicability Analysis for Smart Grid Functions: The InteGrid Project Approach," Energies, MDPI, vol. 14(18), pages 1-39, September.
    8. Garfield Wayne Hunter & Daniele Vettorato & Gideon Sagoe, 2018. "Creating Smart Energy Cities for Sustainability through Project Implementation: A Case Study of Bolzano, Italy," Sustainability, MDPI, vol. 10(7), pages 1-29, June.
    9. Georgios Fotis & Christos Dikeakos & Elias Zafeiropoulos & Stylianos Pappas & Vasiliki Vita, 2022. "Scalability and Replicability for Smart Grid Innovation Projects and the Improvement of Renewable Energy Sources Exploitation: The FLEXITRANSTORE Case," Energies, MDPI, vol. 15(13), pages 1-32, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5312-:d:1506490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.