A Review on Machine Learning-Aided Hydrothermal Liquefaction Based on Bibliometric Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Leng, Lijian & Li, Tanghao & Zhan, Hao & Rizwan, Muhammad & Zhang, Weijin & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2023. "Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass," Energy, Elsevier, vol. 278(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Xiaorui & Yang, Haiping & Xue, Peixuan & Tang, Yuanjun & Ye, Chao & Guo, Wenwen, 2024. "Machine learning modeling of the capacitive performance of N-doped porous biochar electrodes with experimental verification," Renewable Energy, Elsevier, vol. 231(C).
- Zhao, Chenxi & Lu, Xueying & Jiang, Zihao & Ma, Huan & Chen, Juhui & Liu, Xiaogang, 2024. "Prediction of bio-oil yield by machine learning model based on 'enhanced data' training," Renewable Energy, Elsevier, vol. 225(C).
- Yuan, Ziyun & Chen, Lei & Liu, Gang & Zhang, Yuhan, 2023. "Knowledge-informed Variational Bayesian Gaussian mixture regression model for predicting mixed oil length," Energy, Elsevier, vol. 285(C).
- Liu, Jia & Liu, Shanjian & Zhao, An & Bi, Dongmei & Yin, Mengqian & Zhao, Wenjing, 2024. "Effects of stepwise nitrogen-enriched pyrolysis strategies on nitrogenous compounds enrichment in cellulose pyrolysis bio-oils and nitrogen migration pathways," Energy, Elsevier, vol. 306(C).
- Leng, Lijian & Zhou, Junhui & Zhang, Weijin & Chen, Jiefeng & Wu, Zhibin & Xu, Donghai & Zhan, Hao & Yuan, Xingzhong & Xu, Zhengyong & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2024. "Machine-learning-aided hydrochar production through hydrothermal carbonization of biomass by engineering operating parameters and/or biomass mixture recipes," Energy, Elsevier, vol. 288(C).
More about this item
Keywords
hydrothermal liquefaction; machine learning; bibliometric analysis; biomass;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5254-:d:1503961. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.