IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5226-d1502905.html
   My bibliography  Save this article

Application of the FDTD Method for Multivariate Analysis of the Influence of Conductivity and the Arrangement of Hollows Inside Bricks on the Values of Electric Field Intensity

Author

Listed:
  • Agnieszka Choroszucho

    (Department of Electrical Engineering, Power Electronics and Power Engineering, Faculty of Electrical Engineering, Białystok University of Technology, Wiejska 45D Str., 15-351 Białystok, Poland)

  • Tomasz Szczegielniak

    (Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Częstochowa University of Technology, Armii Krajowej 17, 42-200 Częstochowa, Poland)

  • Dariusz Kusiak

    (Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Częstochowa University of Technology, Armii Krajowej 17, 42-200 Częstochowa, Poland)

Abstract

The article contains a numerical analysis of the effects of electromagnetic wave propagation in an area containing a non-ideal, non-uniform, and absorbing dielectric. The analysis concerned the influence of the structure of the building material and its electrical parameters on the electric field intensity. The analysis took into account the variability of the number of hollows in the brick, the width of hollows, as well as the arrangement of these hollows relative to each other using the example of two types of bricks. The article also provides the most commonly used values of electrical parameters for building materials (brick, plaster). For this reason, the article includes results for different values of conductivity (0–0.2 S/m). The FDTD (Finite Difference Time Domain) method was used for multivariate analysis. The aim was to verify the correctness of the numerical assumptions adopted. Using the example of the most commonly used wall structure in construction, the results obtained using the FDTD method were compared with values obtained using another numerical method, the finite element method (FEM). The influence of an additional layer of plaster on the considered wall on the electric field was also checked. The analysis showed that a symmetrical arrangement of bricks results in higher values of the electric field by an average of 20%. Of course, this depends on the length of the hollows and the number of holes. The highest field values occur at low conductivities (0–0.04 S/m). A brick wall with a larger number of hollows and a symmetrical brick arrangement shows the highest electric field intensity, especially for hollow sizes (0.009–0.015 m).

Suggested Citation

  • Agnieszka Choroszucho & Tomasz Szczegielniak & Dariusz Kusiak, 2024. "Application of the FDTD Method for Multivariate Analysis of the Influence of Conductivity and the Arrangement of Hollows Inside Bricks on the Values of Electric Field Intensity," Energies, MDPI, vol. 17(20), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5226-:d:1502905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5226/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5226/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacek Maciej Stankiewicz, 2023. "Analysis of the Wireless Power Transfer System Using a Finite Grid of Planar Circular Coils," Energies, MDPI, vol. 16(22), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5226-:d:1502905. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.