IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5168-d1500641.html
   My bibliography  Save this article

Application of the FDTD Method to Analyze the Influence of Brick Complexity on Electromagnetic Wave Propagation

Author

Listed:
  • Agnieszka Choroszucho

    (Department of Electrical Engineering, Power Electronics and Power Engineering, Faculty of Electrical Engineering, Białystok University of Technology, Wiejska 45D Str., 15-351 Białystok, Poland)

  • Tomasz Szczegielniak

    (Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Częstochowa University of Technology, Armii Krajowej 17, 42-200 Częstochowa, Poland)

  • Dariusz Kusiak

    (Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Częstochowa University of Technology, Armii Krajowej 17, 42-200 Częstochowa, Poland)

Abstract

This article presents a numerical analysis of the effects related to the propagation of electromagnetic waves in an area containing a non-ideal, non-uniform, and absorbing dielectric. The analysis concerns the influence of electrical parameters, the structure of the building material, and the layering of the wall on the values of the electric field intensity. A multivariate analysis was carried out with different conductivity values. Homogeneous materials (e.g., solid brick) can be analyzed using the analytical method. In the case of complex materials containing, e.g., hollows (brick with hollows, hollow block), it is necessary to use the numerical method. The FDTD (finite difference time domain) method was used to assess the dependence of the electric field intensity on the layering, the length of hollows in bricks, and the material loss. In order to check the correctness of the adopted numerical assumptions, a series of tests related to the discretization of the model was carried out. The article also presents the influence of changing the length of hollows in bricks on the values of the electric field intensity at a frequency of 2.4 GHz. The instantaneous field distributions and maximum values of the electric field intensity are presented. In the model with a two-layer wall, regardless of the conductivity, the field values were the same for the two models, where the difference in the percentage of ceramic mass in the brick was 8%. A 12% decrease in the percentage of ceramic mass in the brick resulted in a 15% increase in the value of the area between a single-layer and a double-layer wall made of clinker bricks. At a conductivity of 0.04 S/m for a single-layer wall, the field values were similar for all brick variants.

Suggested Citation

  • Agnieszka Choroszucho & Tomasz Szczegielniak & Dariusz Kusiak, 2024. "Application of the FDTD Method to Analyze the Influence of Brick Complexity on Electromagnetic Wave Propagation," Energies, MDPI, vol. 17(20), pages 1-28, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5168-:d:1500641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5168/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5168/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacek Maciej Stankiewicz, 2023. "Estimation of the Influence of the Coil Resistance on the Power and Efficiency of the WPT System," Energies, MDPI, vol. 16(17), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Maciej Stankiewicz, 2023. "Analysis of the Wireless Power Transfer System Using a Finite Grid of Planar Circular Coils," Energies, MDPI, vol. 16(22), pages 1-15, November.
    2. Zbigniew Sołjan & Tomasz Popławski, 2024. "Budeanu’s Distortion Power Components Based on CPC Theory in Three-Phase Four-Wire Systems Supplied by Symmetrical Nonsinusoidal Voltage Waveforms," Energies, MDPI, vol. 17(5), pages 1-30, February.
    3. Zbigniew Sołjan & Tomasz Popławski & Marek Kurkowski & Maciej Zajkowski, 2024. "Compensation of Budeanu’s Reactive and Complemented Reactive Currents in Extended Budeanu Theory in 3-Phase 4-Wire Systems Powered by Symmetrical Nonsinusoidal Voltage Source," Energies, MDPI, vol. 17(9), pages 1-36, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5168-:d:1500641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.