IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4986-d1492881.html
   My bibliography  Save this article

Study on the Economic Operation of a 1000 MWe Coal-Fired Power Plant with CO 2 Capture

Author

Listed:
  • Jinning Yang

    (CHN ENERGY New Energy Technology Research Institute Co., Ltd., Beijing 102209, China)

  • Chaowei Wang

    (CHN ENERGY New Energy Technology Research Institute Co., Ltd., Beijing 102209, China)

  • Dong Xu

    (CHN ENERGY New Energy Technology Research Institute Co., Ltd., Beijing 102209, China)

  • Xuehai Yu

    (CHN ENERGY New Energy Technology Research Institute Co., Ltd., Beijing 102209, China)

  • Yang Yang

    (CHN ENERGY New Energy Technology Research Institute Co., Ltd., Beijing 102209, China
    State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

  • Zhiyong Wang

    (CHN ENERGY New Energy Technology Research Institute Co., Ltd., Beijing 102209, China)

  • Xiao Wu

    (National Engineering Research Center of Power Generation Control and Safety, Southeast University, Nanjing 210096, China)

Abstract

The flexible operation of carbon capture units is crucial for the economic performance of coal-fired power plants equipped with CO 2 capture systems. This paper aims to investigate the impact of electricity, CO 2 , and fuel prices on the economic operation of such plants. A novel economic optimization model is proposed, integrating a static model of the carbon capture system with a particle swarm optimization algorithm. A new concept, the CO 2 boundary price, is introduced as a key metric for determining the operating conditions of CO 2 capture units. The CO 2 boundary price rises when the power load decreases due to the decline in power generation efficiency, and it also increases with rising fuel prices, as the cost of steam for CO 2 capture increases. Additionally, when the objective is to meet power load demand, CO 2 prices have a great influence on the operation of CO 2 capture units, assuming fixed coal and electricity prices. However, when the primary goal is to maximize plant profitability, the system’s operational conditions are strongly influenced by the relative prices of electricity and CO 2 . The proposed optimization model and the uncovered price-effect mechanisms provide valuable insights into the economic operation of carbon capture power plants.

Suggested Citation

  • Jinning Yang & Chaowei Wang & Dong Xu & Xuehai Yu & Yang Yang & Zhiyong Wang & Xiao Wu, 2024. "Study on the Economic Operation of a 1000 MWe Coal-Fired Power Plant with CO 2 Capture," Energies, MDPI, vol. 17(19), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4986-:d:1492881
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4986/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4986/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdul Manaf, Norhuda & Qadir, Abdul & Abbas, Ali, 2016. "Temporal multiscalar decision support framework for flexible operation of carbon capture plants targeting low-carbon management of power plant emissions," Applied Energy, Elsevier, vol. 169(C), pages 912-926.
    2. Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
    3. Oh, Se-Young & Yun, Seokwon & Kim, Jin-Kuk, 2018. "Process integration and design for maximizing energy efficiency of a coal-fired power plant integrated with amine-based CO2 capture process," Applied Energy, Elsevier, vol. 216(C), pages 311-322.
    4. Yang, Lin & Xu, Mao & Yang, Yuantao & Fan, Jingli & Zhang, Xian, 2019. "Comparison of subsidy schemes for carbon capture utilization and storage (CCUS) investment based on real option approach: Evidence from China," Applied Energy, Elsevier, vol. 255(C).
    5. Julius Wesche & Silvia Germán & Lila Gonçalves & Ilon Jödicke & Sergi López‐Asensio & Ana Prades & Sabine Preuß & Christian Oltra Algado & Elisabeth Dütschke, 2023. "CCUS or no CCUS? Societal support for policy frameworks and stakeholder perceptions in France, Spain, and Poland," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 13(1), pages 48-66, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Charles A. & Brandt, Adam R. & Durlofsky, Louis J. & Jayaweera, Indira, 2016. "Assessment of advanced solvent-based post-combustion CO2 capture processes using a bi-objective optimization technique," Applied Energy, Elsevier, vol. 179(C), pages 1209-1219.
    2. Hanak, Dawid P. & Kolios, Athanasios J. & Manovic, Vasilije, 2016. "Comparison of probabilistic performance of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant," Applied Energy, Elsevier, vol. 172(C), pages 323-336.
    3. Vu, Thang Toan & Lim, Young-Il & Song, Daesung & Mun, Tae-Young & Moon, Ji-Hong & Sun, Dowon & Hwang, Yoon-Tae & Lee, Jae-Goo & Park, Young Cheol, 2020. "Techno-economic analysis of ultra-supercritical power plants using air- and oxy-combustion circulating fluidized bed with and without CO2 capture," Energy, Elsevier, vol. 194(C).
    4. Fu, Yue & Wang, Liyuan & Liu, Ming & Wang, Jinshi & Yan, Junjie, 2023. "Performance analysis of coal-fired power plants integrated with carbon capture system under load-cycling operation conditions," Energy, Elsevier, vol. 276(C).
    5. Jiaquan Li & Yunbing Hou & Pengtao Wang & Bo Yang, 2018. "A Review of Carbon Capture and Storage Project Investment and Operational Decision-Making Based on Bibliometrics," Energies, MDPI, vol. 12(1), pages 1-22, December.
    6. Pereira, Luís M.C. & Vega, Lourdes F., 2018. "A systematic approach for the thermodynamic modelling of CO2-amine absorption process using molecular-based models," Applied Energy, Elsevier, vol. 232(C), pages 273-291.
    7. Pereira, Luís M.C. & Llovell, Fèlix & Vega, Lourdes F., 2018. "Thermodynamic characterisation of aqueous alkanolamine and amine solutions for acid gas processing by transferable molecular models," Applied Energy, Elsevier, vol. 222(C), pages 687-703.
    8. Wu, Ying & Chen, Xiaoping & Ma, Jiliang & Wu, Ye & Liu, Daoyin & Xie, Weiyi, 2020. "System integration optimization for coal-fired power plant with CO2 capture by Na2CO3 dry sorbents," Energy, Elsevier, vol. 211(C).
    9. Yun, Seokwon & Lee, Sunghoon & Jang, Mun-Gi & Kim, Jin-Kuk, 2021. "Techno-economic assessment of CO2 capture integrated coal-fired power plant with energetic analysis," Energy, Elsevier, vol. 236(C).
    10. Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).
    11. Garlapalli, Ravinder K. & Spencer, Michael W. & Alam, Khairul & Trembly, Jason P., 2018. "Integration of heat recovery unit in coal fired power plants to reduce energy cost of carbon dioxide capture," Applied Energy, Elsevier, vol. 229(C), pages 900-909.
    12. Zhu, Mingjuan & Liu, Yudong & Wu, Xiao & Shen, Jiong, 2023. "Dynamic modeling and comprehensive analysis of direct air-cooling coal-fired power plant integrated with carbon capture for reliable, economic and flexible operation," Energy, Elsevier, vol. 263(PA).
    13. Xie, Weiyi & Chen, Xiaoping & Ma, Jiliang & Liu, Daoyin & Cai, Tianyi & Wu, Ye, 2019. "Energy analyses and process integration of coal-fired power plant with CO2 capture using sodium-based dry sorbents," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Yun, Seokwon & Oh, Se-Young & Kim, Jin-Kuk, 2020. "Techno-economic assessment of absorption-based CO2 capture process based on novel solvent for coal-fired power plant," Applied Energy, Elsevier, vol. 268(C).
    15. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    16. Yin, Linfei & Xie, Jiaxing, 2022. "Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes," Energy, Elsevier, vol. 238(PA).
    17. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    18. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
    19. Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
    20. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4986-:d:1492881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.