Author
Listed:
- Nathan Sell
(Department Mechanical Engineering, University of Bath, Bath BA2 7AY, UK)
- Francesco Sciatti
(Department of Mechanics, Mathematics and Management, Politecnico di Bari, 70125 Bari, Italy)
- Andrew Plummer
(Department Mechanical Engineering, University of Bath, Bath BA2 7AY, UK)
- Tom Love
(Safran Landing Systems, Gloucester GL2 9QH, UK)
Abstract
Hydraulic actuation systems are widely used in industries such as aerospace, the marine industry, off-highway vehicles, and manufacturing. There has been a shift from the hydraulic distribution of power from a centralized supply to electrical power distribution, to reduce the maintenance requirements and weight and improve the efficiency. However, hydraulic actuators have many advantages, such as power density, durability, and controllability, so the ability to convert electrical to hydraulic power locally to drive an actuator is important. Traditional hydraulic pumps are inefficient and unsuitable for low-power applications, making piezopumps a promising alternative for the conversion of electrical to hydraulic power in the sub-100 W range. Currently, the use of piezopumps is limited by their maximum power (typically a few watts or less) and low flows. This paper details the design, simulation, and testing of a multi-cylinder piezopump designed to push the envelope of the power output. The simulation results demonstrate that pumps with two or three cylinders show increasing benefits in terms of hydraulic and electrical performance due to the reduced flow and current ripple compared to a single-cylinder pump. The experimental results from a two-cylinder pump confirm this, and the effect of the phase relationship between the drive signals is investigated in detail. The experimental pump has fast-acting disc-style reed non-return valves, allowing piezostack drive frequencies of up to 1.4 kHz to be used. Custom power electronics tailored to the pump are developed. These features are critical in demonstrating the potential for multi-cylinder piezopumps to play an important role as a future actuation solution.
Suggested Citation
Nathan Sell & Francesco Sciatti & Andrew Plummer & Tom Love, 2024.
"Design and Testing of a Multi-Cylinder Piezopump for Hydraulic Actuation,"
Energies, MDPI, vol. 17(19), pages 1-22, September.
Handle:
RePEc:gam:jeners:v:17:y:2024:i:19:p:4876-:d:1488301
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4876-:d:1488301. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.