IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4692-d1482067.html
   My bibliography  Save this article

Modeling the Operating Conditions of Electric Power Systems Feeding DC and AC Traction Substations

Author

Listed:
  • Iliya K. Iliev

    (Department of Heat, Hydraulics and Environmental Engineering, “Angel Kanchev” University of Ruse, 7017 Ruse, Bulgaria)

  • Andrey V. Kryukov

    (Department of Transport Electric Power, Irkutsk State Transport University, 664074 Irkutsk, Russia
    Department of Power Supply and Electrical Engineering, Irkutsk National Research Technical University, 664074 Irkutsk, Russia)

  • Konstantin V. Suslov

    (Department of Power Supply and Electrical Engineering, Irkutsk National Research Technical University, 664074 Irkutsk, Russia
    Department of Hydropower and Renewable Energy, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Aleksandr V. Cherepanov

    (Department of Transport Electric Power, Irkutsk State Transport University, 664074 Irkutsk, Russia)

  • Nguyen Quoc Hieu

    (Department of Power Supply and Electrical Engineering, Irkutsk National Research Technical University, 664074 Irkutsk, Russia)

  • Ivan H. Beloev

    (Department of Transport Electric Power, “Angel Kanchev” University of Ruse, 7017 Ruse, Bulgaria)

  • Yuliya S. Valeeva

    (Department of Transport Electric Power, Russian University of Cooperation, 420034 Kazan, Russia)

Abstract

This paper presents the findings of the research aimed at developing computer models to determine the operating conditions in electric power systems (EPSs) feeding DC and AC railway substations. The object of the research is an EPS with a predominant traction load whose high-voltage power lines are connected to transformer and converter substations with 3 kV and 27.5 kV traction networks. The supply network includes 110 kV and 220 kV power lines. The EPS operating parameters are calculated based on the decomposition of the system into alternating and direct current segments. Calculations are performed for the fundamental frequency and high harmonic frequencies. The modeling technique is universal and can be used to determine the operating parameters and power quality indices for any configuration of an EPS and various designs of traction networks. With this technique, one can solve numerous additional problems, such as calculating the processes of ice melting in traction networks and power lines, determining electromagnetic field strengths, and assessing the heating of power line wires and catenary suspensions. The results obtained show that the voltages on the current collectors are within acceptable limits for all AC and DC electric locomotives. The levels of asymmetry on the 110 and 220 kV tires of traction substations (TP) do not exceed the normally permissible values. The values of the asymmetry coefficients for DC TP are tenths of a percent. With an increase in the size of traffic and in post-emergency conditions caused by the disconnection of communication between one of the support substations and the EPS, the asymmetry indicators on the 220 kV buses of AC substations may exceed the permissible limits. Phase-controlled reactive power sources can be used to reduce them. The analysis of the results of the determination of non-sinusoidal modes allows us to formulate the conclusion that the values of harmonic distortion go beyond the normative limits. Passive and active filters of higher harmonics can be used to normalize them. Calculations of thermal modes of traction transformers show that the temperatures of the most heated points do not exceed acceptable values.

Suggested Citation

  • Iliya K. Iliev & Andrey V. Kryukov & Konstantin V. Suslov & Aleksandr V. Cherepanov & Nguyen Quoc Hieu & Ivan H. Beloev & Yuliya S. Valeeva, 2024. "Modeling the Operating Conditions of Electric Power Systems Feeding DC and AC Traction Substations," Energies, MDPI, vol. 17(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4692-:d:1482067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4692/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrey Rylov & Pavel Ilyushin & Aleksandr Kulikov & Konstantin Suslov, 2021. "Testing Photovoltaic Power Plants for Participation in General Primary Frequency Control under Various Topology and Operating Conditions," Energies, MDPI, vol. 14(16), pages 1-20, August.
    2. Yang, Songpo & Chen, Yanyan & Dong, Zhurong & Wu, Jianjun, 2023. "A collaborative operation mode of energy storage system and train operation system in power supply network," Energy, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksandr Kulikov & Pavel Ilyushin & Anton Loskutov & Konstantin Suslov & Sergey Filippov, 2022. "WSPRT Methods for Improving Power System Automation Devices in the Conditions of Distributed Generation Sources Operation," Energies, MDPI, vol. 15(22), pages 1-20, November.
    2. Natalia Bakhtadze & Evgeny Maximov & Natalia Maximova, 2021. "Digital Identification Algorithms for Primary Frequency Control in Unified Power System," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    3. Andrey Achitaev & Pavel Ilyushin & Konstantin Suslov & Sergey Kobyletski, 2022. "Dynamic Simulation of Starting and Emergency Conditions of a Hydraulic Unit Based on a Francis Turbine," Energies, MDPI, vol. 15(21), pages 1-18, October.
    4. Dmitriy Karamov & Pavel Ilyushin & Ilya Minarchenko & Sergey Filippov & Konstantin Suslov, 2023. "The Role of Energy Performance Agreements in the Sustainable Development of Decentralized Energy Systems: Methodology for Determining the Equilibrium Conditions of the Contract," Energies, MDPI, vol. 16(6), pages 1-12, March.
    5. Guan, Bowen & Yang, Haobo & Zhang, Tao & Liu, Xiaohua & Wang, Xinke, 2024. "Technoeconomic analysis of rooftop PV system in elevated metro station for cost-effective operation and clean electrification," Renewable Energy, Elsevier, vol. 226(C).
    6. Olga Shepovalova & Yuri Arbuzov & Vladimir Evdokimov & Pavel Ilyushin & Konstantin Suslov, 2023. "Assessment of the Gross, Technical and Economic Potential of Region’s Solar Energy for Photovoltaic Energetics," Energies, MDPI, vol. 16(3), pages 1-22, January.
    7. Dmitriy N. Karamov & Pavel V. Ilyushin & Konstantin V. Suslov, 2022. "Electrification of Rural Remote Areas Using Renewable Energy Sources: Literature Review," Energies, MDPI, vol. 15(16), pages 1-13, August.
    8. Aleksandr Kulikov & Pavel Ilyushin & Konstantin Suslov & Sergey Filippov, 2023. "Estimating the Error of Fault Location on Overhead Power Lines by Emergency State Parameters Using an Analytical Technique," Energies, MDPI, vol. 16(3), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4692-:d:1482067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.