IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4618-d1478339.html
   My bibliography  Save this article

Numerical Simulation Study on Rotary Air Preheater Considering the Influences of Steam Soot Blowing

Author

Listed:
  • Youfu Chen

    (Jiangsu Frontier Electric Technology Co., Ltd., Nanjing 211102, China)

  • Yaou Wang

    (Jiangsu Frontier Electric Technology Co., Ltd., Nanjing 211102, China)

  • Bo Chen

    (Jiangsu Frontier Electric Technology Co., Ltd., Nanjing 211102, China)

  • Hongda Zhu

    (School of Energy & Environment, Southeast University, Nanjing 210096, China)

  • Lingling Zhao

    (School of Energy & Environment, Southeast University, Nanjing 210096, China)

Abstract

The ash deposition is a general problem that needs to be solved effectively for the rotary air preheater of the coal-fired boiler. Taking the rotary air preheater of a 600 MW power station as the object, the mesh model of the flue gas side of the air preheater, considering the influences of steam soot blowing, is established using the Gambit 2.4.6 software. Based on the SIMPLE algorithm, the velocity field and the temperature field in the air preheater under varied working conditions are simulated using the software of Ansys Fluent 2021R1, and the influences of the boiler load, the operation parameters of the steam soot blower, and the running and outage of the soot blower on the flue gas velocity distribution in the depth direction of the corrugated plates, the soot-blowing coverage area, the inlet flue gas velocity, and the inlet flue gas temperature of the corrugated plates are analyzed. Under the base working condition, the flue gas velocity on the axis of the steam nozzle first decreases rapidly with increasing the corrugated plate depth (Z < 1.0 m), and then it decreases slowly with an almost equal slope. The longitudinal flue gas velocity has a positive correlation with the boiler load. The longitudinal flue gas velocity obviously decreases when the boiler load is decreased, and its reduction increases as the corrugated plate depth increases. It is one reason that the ash deposition is prone to occur on the cold end surface of corrugated plates under the condition of low boiler load. The longitudinal flue gas velocity increases with the soot-blowing steam velocity increasing when the corrugated plate depth is less than 1.5 m, but after that, it is almost not affected by the change in soot-blowing steam velocity. The soot-blowing coverage area has a negative correlation with the boiler load but a slight positive correlation with the steam velocity of the soot blower on the whole. The inlet flue gas velocity of the corrugated plates has a positive correlation with the boiler load and the inlet steam velocity of the soot blower. The average inlet flue gas velocity decreases by 21.7% when the boiler load is reduced by 50%. For every 5 m/s variation in the inlet steam velocity, the inlet flue gas velocity changes by about 10–14% whether the steam soot blower is put into operation or not, which has an obvious effect on the inlet gas velocity of the corrugated plates. The inlet flue gas temperature of the corrugated plates is, respectively, positively correlated with the boiler load and the inlet steam temperature of the soot blower. When the boiler load is reduced from 100% BMCR to 50% BMCR, the average inlet flue gas temperature of the corrugated plates is reduced by 44.2 K; however, when the soot-blowing steam temperature varies by 20 K, the average inlet flue gas temperature of the corrugated plates varies by only about 1.8 K. It means that it is difficult to enhance the cold end flue gas temperature of the corrugated plates only by raising the soot-blowing steam temperature at low boiler load. Adding a soot blower using high-temperature steam or hot air at the outlet of the corrugated plates may be an option to solve the ash deposition of the corrugated plates.

Suggested Citation

  • Youfu Chen & Yaou Wang & Bo Chen & Hongda Zhu & Lingling Zhao, 2024. "Numerical Simulation Study on Rotary Air Preheater Considering the Influences of Steam Soot Blowing," Energies, MDPI, vol. 17(18), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4618-:d:1478339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4618/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4618-:d:1478339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.