Author
Listed:
- Sławomir Błaż
(Oil and Gas Institute—National Research Institute, 31-503 Krakow, Poland)
- Grzegorz Zima
(Oil and Gas Institute—National Research Institute, 31-503 Krakow, Poland)
- Bartłomiej Jasiński
(Oil and Gas Institute—National Research Institute, 31-503 Krakow, Poland)
- Marcin Kremieniewski
(Oil and Gas Institute—National Research Institute, 31-503 Krakow, Poland)
Abstract
Energy demand and growing environmental concerns have fueled increased interest in geothermal drilling in recent decades. The high temperature and pressure in the boreholes present significant challenges to drilling, particularly in terms of the selection of suitable drilling mud, cement slurry, and drilling equipment. Drilling mud is regarded as one of the primary factors that affect the cost and success of geothermal drilling. This paper presents experimental studies aimed at assessing the thermal stability of drilling muds for geothermal drilling. Research on the antidegradation of polymers contained in drilling muds is presented. The thermal stability of drilling fluids was evaluated on the basis of changes in rheological and filtration parameters under the influence of a temperature of 160 °C. Attempts were made to increase the thermal resistance of drilling fluids by using antioxidants and glycol compounds. The effectiveness of increasing the thermal resistance of muds by adding synthetic polymers, nanomaterials, and graphite was tested. A new way of increasing the thermal resistance of drilling muds by using fatty amine compounds in combination with the amine agent ‘TEA’ was proposed. Tests showed that the addition of polyglycol and the antioxidant agent sodium ascorbate to the mud did not protect the polymers from decomposition at 160 °C. There was no effect of increasing the thermal conductivity on improving the thermal resistance of the scrubber. Based on the analysis of results from laboratory tests, a composition of a water-based drilling mud without bentonite was developed for drilling geothermal wells. The developed drilling mud is characterized by thermal resistance up to 160 °C, stable rheological parameters, low filtration, and appropriate thermal conductivity characteristics.
Suggested Citation
Sławomir Błaż & Grzegorz Zima & Bartłomiej Jasiński & Marcin Kremieniewski, 2024.
"Increasing the Thermal Resistance of Water-Based Mud for Drilling Geothermal Wells,"
Energies, MDPI, vol. 17(18), pages 1-18, September.
Handle:
RePEc:gam:jeners:v:17:y:2024:i:18:p:4537-:d:1474820
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4537-:d:1474820. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.