Author
Listed:
- Minan Tang
(College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
- Xi Guo
(College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
- Jiandong Qiu
(College of Electrical and Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
- Jinping Li
(College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
- Bo An
(College of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
Abstract
The forecasting of charging demand for electric vehicles (EVs) plays a vital role in maintaining grid stability and optimizing energy distribution. Therefore, an innovative method for the prediction of EV charging load demand is proposed in this study to address the downside of the existing techniques in capturing the spatial–temporal heterogeneity of electric vehicle (EV) charging loads and predicting the charging demand of electric vehicles. Additionally, an innovative method of electric vehicle charging load demand forecasting is proposed, which is based on the weighted measurement fusion unscented Kalman filter (UKF) algorithm, to improve the accuracy and efficiency of forecasting. First, the data collected from OpenStreetMap and Amap are used to analyze the distribution of urban point-of-interest (POI), to accurately classify the functional areas of the city, and to determine the distribution of the urban road network, laying a foundation for modeling. Second, the travel chain theory was applied to thoroughly analyze the travel characteristics of EV users. The Improved Floyd (IFloyd) algorithm is used to determine the optimal route. Also, a Monte Carlo simulation is performed to estimate the charging load for electric vehicle users in a specific region. Then, a weighted measurement fusion UKF (WMF–UKF) state estimator is introduced to enhance the accuracy of prediction, which effectively integrates multi-source data and enables a more detailed prediction of the spatial–temporal distribution of load demand. Finally, the proposed method is validated comparatively against traffic survey data and the existing methods by conducting a simulation experiment in an urban area. The results show that the method proposed in this paper is applicable to predict the peak hours more accurately compared to the reference method, with the accuracy of first peak prediction improved by 53.53% and that of second peak prediction improved by 23.23%. The results not only demonstrate the high performance of the WMF–UKF prediction model in forecasting peak periods but also underscore its potential in supporting grid operations and management, which provides a new solution to improving the accuracy of EV load demand forecasting.
Suggested Citation
Minan Tang & Xi Guo & Jiandong Qiu & Jinping Li & Bo An, 2024.
"Electric Vehicle Charging Load Demand Forecasting in Different Functional Areas of Cities with Weighted Measurement Fusion UKF Algorithm,"
Energies, MDPI, vol. 17(17), pages 1-25, September.
Handle:
RePEc:gam:jeners:v:17:y:2024:i:17:p:4505-:d:1473893
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4505-:d:1473893. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.