IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4316-d1466238.html
   My bibliography  Save this article

Optimal Reconfiguration of Bipolar DC Networks Using Differential Evolution

Author

Listed:
  • Wesley Peres

    (Department of Electrical Engineering, Federal University of São João del-Rei-UFSJ, São João del-Rei 36307-352, Brazil
    These authors contributed equally to this work.)

  • Raphael Paulo Braga Poubel

    (Department of Electrical Engineering, Federal Center of Technological Education of Minas Gerais-CEFET-MG, Belo Horizonte 30510-000, Brazil
    These authors contributed equally to this work.)

Abstract

The search for more efficient power grids has led to the concept of microgrids, based on the integration of new-generation technologies and energy storage systems. These devices inherently operate in DC, making DC microgrids a potential solution for improving power system operation. In particular, bipolar DC microgrids offer more flexibility due to their two voltage levels. However, more complex tools, such as optimal power flow (OPF) analysis, are required to analyze these systems. In line with these requirements, this paper proposes an OPF for bipolar DC microgrid reconfiguration aimed at minimizing power losses, considering dispersed generation (DG) and asymmetrical loads. This is a mixed-integer nonlinear optimization problem in which integer variables are associated with the switch statuses, and continuous variables are associated with the nodal voltages in each pole. The problem is formulated based on current injections and is solved by a hybridization of the differential evolution algorithm (to handle the integer variables) and the interior point method-based OPF (to minimize power losses). The results show a reduction in power losses of approximately 48.22% (33-bus microgrid without DG), 2.87% (33-bus microgrid with DG), 50.90% (69-bus microgrid without DG), and 50.50% (69-bus microgrid with DG) compared to the base case.

Suggested Citation

  • Wesley Peres & Raphael Paulo Braga Poubel, 2024. "Optimal Reconfiguration of Bipolar DC Networks Using Differential Evolution," Energies, MDPI, vol. 17(17), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4316-:d:1466238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4316/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4316/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Jesús C. Hernández, 2023. "A Recursive Conic Approximation for Solving the Optimal Power Flow Problem in Bipolar Direct Current Grids," Energies, MDPI, vol. 16(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter Gil-González & Oscar Danilo Montoya & Jesús C. Hernández, 2023. "Optimal Neutral Grounding in Bipolar DC Networks with Asymmetric Loading: A Recursive Mixed-Integer Quadratic Formulation," Energies, MDPI, vol. 16(9), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4316-:d:1466238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.