Author
Listed:
- Roger Lew
(Virtual Technology and Design, University of Idaho, Moscow, ID 83341, USA)
- Bikash Poudel
(Idaho National Laboratory, Idaho Falls, ID 83415, USA)
- Jaron Wallace
(Idaho National Laboratory, Idaho Falls, ID 83415, USA)
- Tyler L. Westover
(Idaho National Laboratory, Idaho Falls, ID 83415, USA)
Abstract
This paper presents reduced-order modeling of thermal power dispatch (TPD) from a pressurized water reactor (PWR) for providing heat to nearby heat consuming industrial processes that seek to take advantage of nuclear heat to reduce carbon emissions. The reactor model includes the neutronics of the reactor core, thermal–hydraulics of the primary coolant cycle, and a three-lump model of the steam generator (SG). The secondary coolant cycle is represented with quasi-steady state mass and energy balance equations. The secondary cycle consists of a steam extraction system, high-pressure and low-pressure turbines, moisture separator and reheater, high-pressure and low-pressure feedwater heaters, deaerator, feedwater and condensate pumps, and a condenser. The steam produced by the SG is distributed between the turbines and the extraction steam line (XSL) that delivers steam to nearby industrial processes, such as production of clean hydrogen. The reduced-order simulator is verified by comparing predictions with results from separate validated steady-state and transient full-scope PWR simulators for TPD levels between 0% and 70% of the rated reactor power. All simulators indicate that the flow rate of steam in the main steam line and turbine systems decrease with increasing TPD, which causes a reduction in PWR electric power generation. The results are analyzed to assess the impact of TPD on system efficiency and feedwater flow control. Due to the simplicity of the proposed reduced-order model, it can be scaled to represent a PWR of any size with a few parametric changes. In the future, the proposed reduced-order model will be integrated into a power system model in a digital real-time simulator (DRTS) and physical hardware-in-the-loop simulations.
Suggested Citation
Roger Lew & Bikash Poudel & Jaron Wallace & Tyler L. Westover, 2024.
"A Reduced-Order Model of a Nuclear Power Plant with Thermal Power Dispatch,"
Energies, MDPI, vol. 17(17), pages 1-30, August.
Handle:
RePEc:gam:jeners:v:17:y:2024:i:17:p:4298-:d:1465724
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4298-:d:1465724. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.