Author
Listed:
- Dong Li
(Beijing Institute of Control Engineering, Haidian District, Beijing 100190, China)
- Yangyang Hou
(Hydrogen Energy and Space Propulsion Laboratory (HESPL), School of Mechanical, Electronic, and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)
- Yusong Yu
(Hydrogen Energy and Space Propulsion Laboratory (HESPL), School of Mechanical, Electronic, and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)
Abstract
Microwave-assisted ignition is an emerging high-performance ignition method with promising future applications in aerospace. In this work, based on a rectangular waveguide resonant cavity test bed, the effects of two parameters (material and diameter) of the microwave antenna on the ignition and combustion characteristics of ADN-based liquid propellant droplets were investigated using experimental methods. A high-speed camera was used to record the droplet combustion process in the combustion chamber, the effect of the microwave antenna on the propellant combustion response was analyzed based on the emission spectroscopy method, and finally, the loss of the microwave antenna was evaluated using a scanning electron microscope. The experimental results show that the droplet has the lowest critical ignition power (179 W) when the material of the microwave antenna is tungsten, but the ignition delay time is higher than that of copper. A finer diameter of microwave antenna is more favorable for plasma generation. At a microwave power of 260 W, the ignition delay time of the droplet with a microwave antenna diameter of 0.3 mm is 100 ms lower than that of 0.8 mm, which is about 37.5%. In addition, this study points out the mechanism of microwave discharge in the droplet combustion process. The metallic microwave antenna not only collects the electrons escaping from the gas discharge, but also generates a large amount of metallic vapor, which provides charged particles to the plasma. This study provides the possibility for the application of microwave-assisted liquid fuel ignition.
Suggested Citation
Dong Li & Yangyang Hou & Yusong Yu, 2024.
"Effect of Microwave Antenna Material and Diameter on the Ignition and Combustion Characteristics of ADN-Based Liquid Propellant Droplets,"
Energies, MDPI, vol. 17(17), pages 1-14, August.
Handle:
RePEc:gam:jeners:v:17:y:2024:i:17:p:4256-:d:1464014
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4256-:d:1464014. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.