IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4236-d1463249.html
   My bibliography  Save this article

Study of the Dynamics of a Single Bubble

Author

Listed:
  • Anatoliy Pavlenko

    (Department of Building Physics and Renewable Energy, Kielce University of Technology, Aleja Tysiąclecia Państwa Polskiego, 7, 25-314 Kielce, Poland)

  • Hanna Koshlak

    (Department of Building Physics and Renewable Energy, Kielce University of Technology, Aleja Tysiąclecia Państwa Polskiego, 7, 25-314 Kielce, Poland)

Abstract

The behaviour of bubbles in cavitation and boiling processes is determined by the thermodynamic parameters of the two-phase medium and the intensity of heat and mass transfer, which affect the final dynamic effects. In this review, we analyse the influences of these factors on bubble behaviour, as described in existing mathematical models. In particular, we analyse the physical processes that govern bubble behaviour, the influence of mass transfer, vapor and liquid temperature, vapour, and liquid pressure on the inertial and dynamic stages of development. In conclusion, we summarize the problems associated with modelling, the accuracy of numerical predictions, and propose directions for further research.

Suggested Citation

  • Anatoliy Pavlenko & Hanna Koshlak, 2024. "Study of the Dynamics of a Single Bubble," Energies, MDPI, vol. 17(17), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4236-:d:1463249
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Li & Yongfei Yang & Wei-dong Shi & Xiaofan Zhao & Weiqiang Li, 2018. "The Correction and Evaluation of Cavitation Model considering the Thermodynamic Effect," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wenguang & Yu, Zhibin, 2021. "Cavitating flows of organic fluid with thermodynamic effect in a diaphragm pump for organic Rankine cycle systems," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4236-:d:1463249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.