Author
Listed:
- Anica Šešok
(Department of Energy and Power Systems, University of Zagreb Faculty of Electrical Engineering and Computing, 10000 Zagreb, Croatia)
- Ivica Pavić
(Department of Energy and Power Systems, University of Zagreb Faculty of Electrical Engineering and Computing, 10000 Zagreb, Croatia)
Abstract
The increase in renewable energy sources (RESs) in power systems is causing significant changes in their dynamic behavior. To ensure the safe operation of these systems, it is necessary to develop new methods for preserving transient stability that follow the new system dynamics. Fast-response devices such as flexible AC transmission systems (FACTSs) can improve the dynamic response of power systems. One of the most frequently used FACTS devices is the Static Var Compensator (SVC), which can improve a system’s transient stability with a proper control strategy. This paper presents a reactive power control strategy for an SVC using synchronized voltage phasor measurements and particle swarm optimization (PSO) to improve the transient stability of a multimachine power system. The PSO algorithm is based on the sensitivity analysis of bus voltage amplitudes and angles to the reactive power of the SVC. It determines the SVC reactive power required for damping active power oscillations of synchronous generators in fault conditions. The sensitivity coefficients can be determined in advance for the characteristic switching conditions of the influential part of the transmission network, and with the application of the PSO algorithm, enable quick and efficient finding of a satisfactory solution. This relatively simple and fast algorithm can be applied in real time. The proposed control strategy is tested on the IEEE 14-bus system using DIgSILENT PowerFactory. The simulation results show that an SVC with the proposed control strategy effectively minimizes the rotor angle oscillations of generators after large disturbances.
Suggested Citation
Anica Šešok & Ivica Pavić, 2024.
"SVC Control Strategy for Transient Stability Improvement of Multimachine Power System,"
Energies, MDPI, vol. 17(17), pages 1-15, August.
Handle:
RePEc:gam:jeners:v:17:y:2024:i:17:p:4224-:d:1462923
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4224-:d:1462923. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.