IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4212-d1462462.html
   My bibliography  Save this article

Modulation and Control Schemes of Parallel FCC-CSC with DC Current Balance

Author

Listed:
  • Xuehan Chen

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Qiang Gao

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Siqi Wang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Dianguo Xu

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

Abstract

Incorporating AC-type flying capacitors (FC) between series-connected devices is an effective way to enhance the rated voltage for high-power applications based on current source converters (CSCs). Through appropriate modulation and FC voltage control, it is possible to achieve improved DC bus voltage quality with reduced common-mode voltage (CMV) and low dv/dt. On the other hand, the parallel CSC is a popular choice for increasing the system’s rated current to accommodate higher power applications. The use of interleaved modulation techniques can improve the harmonic performance of parallel converters while reducing the need for passive filters. The modular flying capacitor clamped (FCC)-CSC structure can combine these advantages, achieving higher rated power along with improved power quality on both the DC and AC sides. Moreover, the enhanced AC quality contributes to the regulation of FC voltage and further improves the DC-side voltage quality. This paper analyzes the operation principle of the parallel FCC-CSC structure and proposes an interleaved space vector modulation (SVM) method to enhance the harmonic performance of the AC output. Additionally, an optimized zero-state replacement (ZSR) based FC voltage control and a DC-link current balance strategy built on this control are introduced. Simulation and experimental results validate the effectiveness of the proposed methods.

Suggested Citation

  • Xuehan Chen & Qiang Gao & Siqi Wang & Dianguo Xu, 2024. "Modulation and Control Schemes of Parallel FCC-CSC with DC Current Balance," Energies, MDPI, vol. 17(17), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4212-:d:1462462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4212/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4212/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4212-:d:1462462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.