IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4197-d1461900.html
   My bibliography  Save this article

Short-Circuit Fault Diagnosis on the Windings of Three-Phase Induction Motors through Phasor Analysis and Fuzzy Logic

Author

Listed:
  • Josue A. Reyes-Malanche

    (Departamento de Produccion y Seguridad Industrial, Universidad Tecnologica de Aguascalientes, Aguascalientes 20200, Mexico
    These authors contributed equally to this work.)

  • Efrain Ramirez-Velasco

    (Departamento de IngenierĂ­a Electrica Electronica, TecNm/Instituto Tecnologico de Aguascalientes, Aguascalientes 20256, Mexico
    These authors contributed equally to this work.)

  • Francisco J. Villalobos-Pina

    (Departamento de IngenierĂ­a Electrica Electronica, TecNm/Instituto Tecnologico de Aguascalientes, Aguascalientes 20256, Mexico
    These authors also contributed equally to this work.)

  • Suresh K. Gadi

    (Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Coahuila, Torreon Campus, Torreon 27276, Mexico
    These authors also contributed equally to this work.)

Abstract

An induction motor is an electric machine widely used in various industrial and commercial applications due to its efficiency and simple design. In this regard, a methodology based on the electric phasor analysis of line currents and the variations in the phase angles among these line currents is proposed. The values in degrees of the angles between every pair of line currents were introduced to a fuzzy logic algorithm based on the Mamdani model, developed using the Matlab toolbox for detection and isolation of the inter-turn short-circuit faults on the windings of an induction motor. To carry out the analysis, the induction motor was modified in its stator windings to artificially induce short-circuit faults of different magnitudes. The current signals are acquired in real time using a digital platform developed in the Delphi 7 high-level language communicating with a float point unit Digital Signal Processor (DSP) TMS320F28335 by Texas Instruments. The proposed method not only detects the short circuit faults but also isolates the faulty winding.

Suggested Citation

  • Josue A. Reyes-Malanche & Efrain Ramirez-Velasco & Francisco J. Villalobos-Pina & Suresh K. Gadi, 2024. "Short-Circuit Fault Diagnosis on the Windings of Three-Phase Induction Motors through Phasor Analysis and Fuzzy Logic," Energies, MDPI, vol. 17(16), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4197-:d:1461900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kowalski, Czeslaw T & Orlowska-Kowalska, Teresa, 2003. "Neural networks application for induction motor faults diagnosis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 63(3), pages 435-448.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vikas Singh & Purushottam Gangsar & Rajkumar Porwal & A. Atulkar, 2023. "Artificial intelligence application in fault diagnostics of rotating industrial machines: a state-of-the-art review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 931-960, March.
    2. Maciej Skowron & Teresa Orlowska-Kowalska & Marcin Wolkiewicz & Czeslaw T. Kowalski, 2020. "Convolutional Neural Network-Based Stator Current Data-Driven Incipient Stator Fault Diagnosis of Inverter-Fed Induction Motor," Energies, MDPI, vol. 13(6), pages 1-21, March.
    3. Besma Bessam & Arezki Menacer & Mohamed Boumehraz & Hakima Cherif, 2017. "Wavelet transform and neural network techniques for inter-turn short circuit diagnosis and location in induction motor," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 478-488, January.
    4. Maciej Skowron & Marcin Wolkiewicz & Teresa Orlowska-Kowalska & Czeslaw T. Kowalski, 2019. "Effectiveness of Selected Neural Network Structures Based on Axial Flux Analysis in Stator and Rotor Winding Incipient Fault Detection of Inverter-fed Induction Motors," Energies, MDPI, vol. 12(12), pages 1-20, June.
    5. Ana L. Martinez-Herrera & Edna R. Ferrucho-Alvarez & Luis M. Ledesma-Carrillo & Ruth I. Mata-Chavez & Misael Lopez-Ramirez & Eduardo Cabal-Yepez, 2022. "Multiple Fault Detection in Induction Motors through Homogeneity and Kurtosis Computation," Energies, MDPI, vol. 15(4), pages 1-11, February.
    6. Bouzid, M. & Champenois, G., 2013. "An efficient, simplified multiple-coupled circuit model of the induction motor aimed to simulate different types of stator faults," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 90(C), pages 98-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4197-:d:1461900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.