IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4195-d1461715.html
   My bibliography  Save this article

Onboard Neuro-Fuzzy Adaptive Helicopter Turboshaft Engine Automatic Control System

Author

Listed:
  • Serhii Vladov

    (Kremenchuk Flight College of Kharkiv National University of Internal Affairs, 17/6 Peremohy Street, 39605 Kremenchuk, Ukraine)

  • Maryna Bulakh

    (Department of Industrial Processes Computerization and Robotization, Faculty of Mechanics and Technology, Rzeszow University of Technology, 4 Kwiatkowskiego Street, 37-450 Stalowa Wola, Poland)

  • Victoria Vysotska

    (Information Systems and Networks Department, Lviv Polytechnic National University, 12 Bandera Street, 79013 Lviv, Ukraine
    Institute of Computer Science, Osnabrück University, 1 Friedrich-Janssen-Street, 49076 Osnabrück, Germany)

  • Ruslan Yakovliev

    (Kremenchuk Flight College of Kharkiv National University of Internal Affairs, 17/6 Peremohy Street, 39605 Kremenchuk, Ukraine)

Abstract

A modified onboard neuro-fuzzy adaptive (NFA) helicopter turboshaft engine (HTE) automatic control system (ACS) is proposed, which is based on a circuit consisting of a research object, a regulator, an emulator, a compensator, and an observer unit. In this scheme, it is proposed to use the proposed AFNN six-layer hybrid neuro-fuzzy network (NFN) with Sugeno fuzzy inference and a Gaussian membership function for fuzzy variables, which makes it possible to reduce the HTE fuel consumption parameter transient process regulation time by 15.0 times compared with the use of a traditional system automatic control (clear control), 17.5 times compared with the use of a fuzzy ACS (fuzzy control), and 11.25 times compared with the use of a neuro-fuzzy reconfigured ACS based on an ANFIS five-layer hybrid NFN. By applying the Lyapunov method as a criterion, its system stability is proven at any time, with the exception of the initial time, since at the initial time the system is in an equilibrium state. The use of the six-layer ANFF NFN made it possible to reduce the I and II types of error in the HTE fuel consumption controlling task by 1.36…2.06 times compared with the five-layer ANFIS NFN. This work also proposes an AFNN six-layer hybrid NFN training algorithm, which, due to adaptive elements, allows one to change its parameters and settings in real time based on changing conditions or external influences and, as a result, achieve an accuracy of up to 99.98% in the HTE fuel consumption controlling task and reduce losses to 0.2%.

Suggested Citation

  • Serhii Vladov & Maryna Bulakh & Victoria Vysotska & Ruslan Yakovliev, 2024. "Onboard Neuro-Fuzzy Adaptive Helicopter Turboshaft Engine Automatic Control System," Energies, MDPI, vol. 17(16), pages 1-41, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4195-:d:1461715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maryna Bulakh & Leszek Klich & Oleksandra Baranovska & Anastasiia Baida & Sergiy Myamlin, 2023. "Reducing Traction Energy Consumption with a Decrease in the Weight of an All-Metal Gondola Car," Energies, MDPI, vol. 16(18), pages 1-12, September.
    2. Denys Baranovskyi & Maryna Bulakh & Adam Michajłyszyn & Sergey Myamlin & Leonty Muradian, 2023. "Determination of the Risk of Failures of Locomotive Diesel Engines in Maintenance," Energies, MDPI, vol. 16(13), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serhii Vladov & Ruslan Yakovliev & Maryna Bulakh & Victoria Vysotska, 2024. "Neural Network Approximation of Helicopter Turboshaft Engine Parameters for Improved Efficiency," Energies, MDPI, vol. 17(9), pages 1-28, May.
    2. Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Mathematical Modelling of Traction Equipment Parameters of Electric Cargo Trucks," Mathematics, MDPI, vol. 12(4), pages 1-32, February.
    3. Oleg Gubarevych & Stanisław Duer & Inna Melkonova & Marek Woźniak & Jacek Paś & Marek Stawowy & Krzysztof Rokosz & Konrad Zajkowski & Dariusz Bernatowicz, 2023. "Research on and Assessment of the Reliability of Railway Transport Systems with Induction Motors," Energies, MDPI, vol. 16(19), pages 1-21, September.
    4. Maryna Bulakh & Leszek Klich & Oleksandra Baranovska & Anastasiia Baida & Sergiy Myamlin, 2023. "Reducing Traction Energy Consumption with a Decrease in the Weight of an All-Metal Gondola Car," Energies, MDPI, vol. 16(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4195-:d:1461715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.