IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3819-d1448887.html
   My bibliography  Save this article

Numerical Investigation and Simulation of Hydrogen Blending into Natural Gas Combustion

Author

Listed:
  • Laura Jung

    (Institute for Energy Efficiency in Production EEP, University of Stuttgart, 70569 Stuttgart, Germany
    Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany)

  • Alexander Mages

    (Institute for Energy Efficiency in Production EEP, University of Stuttgart, 70569 Stuttgart, Germany
    Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany)

  • Alexander Sauer

    (Institute for Energy Efficiency in Production EEP, University of Stuttgart, 70569 Stuttgart, Germany
    Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany)

Abstract

This study reviews existing simulation models and describes a selected model for analysing combustion dynamics in hydrogen and natural gas mixtures, specifically within non-ferrous melting furnaces. The primary objectives are to compare the combustion characteristics of these two energy carriers and assess the impact of hydrogen integration on furnace operation and efficiency. Using computational fluid dynamics (CFD) simulations, incorporating actual furnace geometries and a detailed combustion and NOx emission prediction model, this research aims to accurately quantify the effects of hydrogen blending. Experimental tests on furnaces using only natural gas confirmed the validity of these simulations. By providing precise predictions for temperature distribution and NOx emissions, this approach reduces the need for extensive laboratory testing, facilitates broader exploration of design modifications, accelerates the design process, and ultimately lowers product development costs.

Suggested Citation

  • Laura Jung & Alexander Mages & Alexander Sauer, 2024. "Numerical Investigation and Simulation of Hydrogen Blending into Natural Gas Combustion," Energies, MDPI, vol. 17(15), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3819-:d:1448887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefania Falfari & Giulio Cazzoli & Valerio Mariani & Gian Marco Bianchi, 2023. "Hydrogen Application as a Fuel in Internal Combustion Engines," Energies, MDPI, vol. 16(6), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alçelik, Necdet & Sarıdemir, Suat & Polat, Fikret & Ağbulut, Ümit, 2024. "Role of hydrogen-enrichment for in-direct diesel engine behaviours fuelled with the diesel-waste biodiesel blends," Energy, Elsevier, vol. 302(C).
    2. Krzysztof Jastrzębski & Marian Cłapa & Łukasz Kaczmarek & Witold Kaczorowski & Anna Sobczyk-Guzenda & Hieronim Szymanowski & Piotr Zawadzki & Piotr Kula, 2024. "Spatial Graphene Structures with Potential for Hydrogen Storage," Energies, MDPI, vol. 17(10), pages 1-18, May.
    3. Grzegorz Szamrej & Mirosław Karczewski, 2024. "Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines," Energies, MDPI, vol. 17(7), pages 1-51, March.
    4. Joaquim Campos & Leonardo Ribeiro & Joaquim Monteiro & Gustavo Pinto & Andresa Baptista, 2024. "NO Formation in Combustion Engines Fuelled by Mixtures of Hydrogen and Methane," Sustainability, MDPI, vol. 16(13), pages 1-15, July.
    5. Ward Suijs & Sebastian Verhelst, 2023. "Scaling Performance Parameters of Reciprocating Engines for Sustainable Energy System Optimization Modelling," Energies, MDPI, vol. 16(22), pages 1-28, November.
    6. Federico Ricci & Jacopo Zembi & Massimiliano Avana & Carlo Nazareno Grimaldi & Michele Battistoni & Stefano Papi, 2024. "Analysis of Hydrogen Combustion in a Spark Ignition Research Engine with a Barrier Discharge Igniter," Energies, MDPI, vol. 17(7), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3819-:d:1448887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.