IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3712-d1444231.html
   My bibliography  Save this article

Short-Term Power Load Forecasting Method Based on Feature Selection and Co-Optimization of Hyperparameters

Author

Listed:
  • Zifa Liu

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Siqi Zheng

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Kunyang Li

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

The current power load exhibits strong nonlinear and stochastic characteristics, increasing the difficulty of short-term prediction. To more accurately capture data features and enhance prediction accuracy and generalization ability, in this paper, we propose an efficient approach for short-term electric load forecasting that is grounded in a synergistic strategy of feature optimization and hyperparameter tuning. Firstly, a dynamic adjustment strategy based on the rate of the change of historical optimal values is introduced to enhance the PID-based Search Algorithm (PSA), enabling the real-time adjustment and optimization of the search process. Subsequently, the proposed Improved Population-based Search Algorithm (IPSA) is employed to achieve the optimal adaptive variational mode decomposition of the load sequence, thereby reducing data volatility. Next, for each load component, a Bi-directional Gated Recurrent Unit network with an attention mechanism (BiGRU-Attention) is established. By leveraging the interdependence between feature selection and hyperparameter optimization, we propose a synergistic optimization strategy based on the Improved Population-based Search Algorithm (IPSA). This approach ensures that the input features and hyperparameters for each component’s predictive model achieve an optimal combination, thereby enhancing prediction performance. Finally, the optimal parameter prediction model is used for multi-step rolling forecasting, with the final prediction values obtained through superposition and reconstruction. The case study results indicate that this method can achieve an adaptive optimization of hybrid prediction model parameters, providing superior prediction accuracy compared to the commonly used methods. Additionally, the method demonstrates robust adaptability to load forecasting across various day types and seasons. Consequently, this approach enhances the accuracy of short-term load forecasting, thereby supporting more efficient power scheduling and resource allocation.

Suggested Citation

  • Zifa Liu & Siqi Zheng & Kunyang Li, 2024. "Short-Term Power Load Forecasting Method Based on Feature Selection and Co-Optimization of Hyperparameters," Energies, MDPI, vol. 17(15), pages 1-25, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3712-:d:1444231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3712/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Mohammad Sharifhosseini & Taher Niknam & Mohammad Hossein Taabodi & Habib Asadi Aghajari & Ehsan Sheybani & Giti Javidi & Motahareh Pourbehzadi, 2024. "Investigating Intelligent Forecasting and Optimization in Electrical Power Systems: A Comprehensive Review of Techniques and Applications," Energies, MDPI, vol. 17(21), pages 1-35, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3712-:d:1444231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.