IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3705-d1444021.html
   My bibliography  Save this article

Sustainable Management and Advanced Nutrient Recovery from Biogas Energy Sector Effluents

Author

Listed:
  • Magdalena Zielińska

    (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland)

  • Katarzyna Bułkowska

    (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland)

Abstract

Anaerobic digestion (AD) is an effective technology for the sustainable management of organic agricultural waste, producing both biogas and nutrient-rich digestate. This study aims to review and evaluate different methods for obtaining valuable products from digestate, with a focus on innovative and sustainable approaches. The main objectives are to identify effective technologies for the recovery of nutrients and organic matter, assess their environmental and economic impact and outline the challenges and prospects in this area. The review covers established techniques (with a technology readiness level (TRL) of six to nine, indicating their maturity from pilot to full scale) such as struvite precipitation and ammonia stripping, which are very effective in recovering nitrogen and phosphorus from digestate and converting it into valuable biofertilizers. Struvite, for example, offers an option for slow-release fertilizers that reduces dependence on synthetic fertilizers. A comparative analysis shows that ammonia stripping can efficiently capture nitrogen and produce fertilizer without harming the environment. New methods, such as microalgae cultivation, use digestate as a nutrient source for the production of biofuels and bioplastics, contributing to renewable energy and sustainable material production. The study also examines composting and vermicomposting, where digestate is converted into nutrient-rich soil conditioners that significantly improve soil health and fertility. The production of biochar through pyrolysis is highlighted for its benefits in improving soil properties and sequestering carbon, providing a dual benefit for waste management and climate change mitigation. Membrane technologies, including ultrafiltration (UF) and reverse osmosis (RO), are being investigated for their effectiveness in nutrient recovery, despite challenges such as membrane fouling and high operating costs. The study highlights the potential of these valorization processes to improve the sustainability and economic viability of AD systems and to align with circular economy principles. The results suggest that the continuous optimization of these technologies and the integration of recycling processes are crucial to overcome existing challenges and realize their full potential.

Suggested Citation

  • Magdalena Zielińska & Katarzyna Bułkowska, 2024. "Sustainable Management and Advanced Nutrient Recovery from Biogas Energy Sector Effluents," Energies, MDPI, vol. 17(15), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3705-:d:1444021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Salud Camilleri-Rumbau & Kelly Briceño & Lene Fjerbæk Søtoft & Knud Villy Christensen & Maria Cinta Roda-Serrat & Massimiliano Errico & Birgir Norddahl, 2021. "Treatment of Manure and Digestate Liquid Fractions Using Membranes: Opportunities and Challenges," IJERPH, MDPI, vol. 18(6), pages 1-30, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aristide Giuliano & Massimiliano Errico & Hamid Salehi & Pasquale Avino, 2022. "Environmental Impact Assessment by Green Processes," IJERPH, MDPI, vol. 19(23), pages 1-4, November.
    2. Alexandros Yfantis & Nikos Yfantis & Triantafyllia Angelakopoulou & George Giannakakis & Fabien Michelet & Spyros Dokianakis & Evangelia Vasilaki & Nikos Katsarakis, 2022. "Industrial Pilot for Assessment of Polymeric and Ceramic Membrane Efficiency in Treatment of Liquid Digestate from Biogas Power Plant," Energies, MDPI, vol. 15(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3705-:d:1444021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.