IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3599-d1440313.html
   My bibliography  Save this article

Improved Amott Method to Determine Oil Recovery Dynamics from Water-Wet Limestone Using GEV Statistics

Author

Listed:
  • Ksenia M. Kaprielova

    (Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia)

  • Maxim P. Yutkin

    (Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia)

  • Mahmoud Mowafi

    (Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia)

  • Ahmed Gmira

    (The Exploration and Petroleum Engineering Center-Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran 31311, Saudi Arabia)

  • Subhash Ayirala

    (The Exploration and Petroleum Engineering Center-Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran 31311, Saudi Arabia)

  • Ali Yousef

    (The Exploration and Petroleum Engineering Center-Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran 31311, Saudi Arabia)

  • Clayton J. Radke

    (Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, USA)

  • Tadeusz W. Patzek

    (Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia)

Abstract

Counter-current spontaneous imbibition of water is a critical oil recovery mechanism. In the laboratory, the Amott test is a commonly used method to assess the efficacy of brine imbibition into oil-saturated core plugs. The classic Amott-cell experiment estimates ultimate oil recovery, but not the recovery dynamics that hold fundamental information about the imbibition mechanisms. Retention of oil droplets at the outer core surface and initial production delay are the two key artifacts of the classic Amott experiment. This retention, referred to here as the “external-surface oil holdup effect” or simply “oil holdup effect”, often results in stepwise recovery curves that obscure the true dynamics of spontaneous imbibition. To address these holdup drawbacks of the classic Amott method, we modified the Amott cell and experimental procedure. For the first time, using water-wet Indiana limestone cores saturated with brine and mineral oil, we showed that our improvements of the Amott method enabled accurate and reproducible measurements of oil recovery dynamics. Also for the first time, we used the generalized extreme value (GEV) statistics to describe oil production histories from water-wet heterogeneous limestone cores with finite initial water saturations. We demonstrated that our four-parameter GEV model accurately described the recovery dynamics, and that optimal GEV parameter values systematically reflected the key characteristics of the oil–rock system, such as oil viscosity and rock permeability. These findings gave us a more fundamental understanding of spontaneous, counter-current imbibition mechanisms and insights into what constitutes a predictive model of counter-current water imbibition into oil-saturated rocks with finite initial water saturation.

Suggested Citation

  • Ksenia M. Kaprielova & Maxim P. Yutkin & Mahmoud Mowafi & Ahmed Gmira & Subhash Ayirala & Ali Yousef & Clayton J. Radke & Tadeusz W. Patzek, 2024. "Improved Amott Method to Determine Oil Recovery Dynamics from Water-Wet Limestone Using GEV Statistics," Energies, MDPI, vol. 17(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3599-:d:1440313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wardana Saputra & Wissem Kirati & Tadeusz Patzek, 2020. "Physical Scaling of Oil Production Rates and Ultimate Recovery from All Horizontal Wells in the Bakken Shale," Energies, MDPI, vol. 13(8), pages 1-29, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangjuan Fan & Ting Dong & Yuejun Zhao & Yalou Zhou & Wentong Zhao & Jie Wang & Yilong Wang, 2023. "Establishment and Application of a Pattern for Identifying Sedimentary Microfacies of a Single Horizontal Well: An Example from the Eastern Transition Block in the Daqing Oilfield, Songliao Basin, Chi," Energies, MDPI, vol. 16(20), pages 1-19, October.
    2. Timofey Eltsov & Maxim Yutkin & Tadeusz W. Patzek, 2020. "Text Analysis Reveals Major Trends in Exploration Geophysics," Energies, MDPI, vol. 13(17), pages 1-15, September.
    3. Syed Haider & Wardana Saputra & Tadeusz Patzek, 2020. "The Key Factors That Determine the Economically Viable, Horizontal Hydrofractured Gas Wells in Mudrocks," Energies, MDPI, vol. 13(9), pages 1-22, May.
    4. Tadeusz W. Patzek & Ahmed M. Saad & Ahmed Hassan, 2022. "Multimodal Carbonates: Distribution of Oil Saturation in the Microporous Regions of Arab Formations," Energies, MDPI, vol. 15(3), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3599-:d:1440313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.