IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3517-d1437371.html
   My bibliography  Save this article

Revisiting the Application of Ultrasonic Technology for Enhanced Oil Recovery: Mechanisms and Recent Advancements

Author

Listed:
  • Huan Zhang

    (College of Chemistry and Material, Weinan Normal University, Weinan 714099, China
    College of Chemistry and Chemical Engineering, Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University, Xi’an 710065, China)

  • Chunyang Gao

    (State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
    CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China)

  • Hongli Zhang

    (College of Chemistry and Material, Weinan Normal University, Weinan 714099, China)

  • Naijian Song

    (College of Chemistry and Material, Weinan Normal University, Weinan 714099, China)

  • Qiang Cao

    (College of Chemistry and Material, Weinan Normal University, Weinan 714099, China)

Abstract

Ultrasonic technology, which has been receiving increasing attention from the petroleum industry, has emerged as a promising environmentally-friendly technology due to its high adaptability, simple operation, low cost, and lack of pollution; the mechanisms of this technology are clarified herein. At the same time, this paper presents a comprehensive review of the impact of ultrasound on enhanced oil recovery (EOR) by removing plugs, reducing oil viscosity, and demulsifying crude oil, while highlighting the latest advancements in this field. Lastly, this paper delves into the challenges and prospects associated with the industrial implementation of power ultrasound. The objective of this review is to provide a comprehensive overview of recent advancements, serving as a valuable reference for future investigations on ultrasound-assisted EOR. Oil field results demonstrate that oil production increased by 26.5% to 100%, water cut decreased by 5% to 96%, the success rate ranged from 75% to 90%, and the effect can last for a duration of 4 h to 12 months.

Suggested Citation

  • Huan Zhang & Chunyang Gao & Hongli Zhang & Naijian Song & Qiang Cao, 2024. "Revisiting the Application of Ultrasonic Technology for Enhanced Oil Recovery: Mechanisms and Recent Advancements," Energies, MDPI, vol. 17(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3517-:d:1437371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kjärstad, Jan & Johnsson, Filip, 2009. "Resources and future supply of oil," Energy Policy, Elsevier, vol. 37(2), pages 441-464, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haugom, Erik & Mydland, Ørjan & Pichler, Alois, 2016. "Long term oil prices," Energy Economics, Elsevier, vol. 58(C), pages 84-94.
    2. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    3. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.
    4. Liam Wagner & Ian Ross & John Foster & Ben Hankamer, 2016. "Trading Off Global Fuel Supply, CO2 Emissions and Sustainable Development," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-17, March.
    5. Wang, Jiangquan & Shahbaz, Muhammad & Song, Malin, 2021. "Evaluating energy economic security and its influencing factors in China," Energy, Elsevier, vol. 229(C).
    6. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
    7. Wan Ahmad, Wan Nurul K. & Rezaei, Jafar & de Brito, Marisa P. & Tavasszy, Lóránt A., 2016. "The influence of external factors on supply chain sustainability goals of the oil and gas industry," Resources Policy, Elsevier, vol. 49(C), pages 302-314.
    8. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    9. van Ruijven, Bas & van Vuuren, Detlef P., 2009. "Oil and natural gas prices and greenhouse gas emission mitigation," Energy Policy, Elsevier, vol. 37(11), pages 4797-4808, November.
    10. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    11. van Moerkerk, Mike & Crijns-Graus, Wina, 2016. "A comparison of oil supply risks in EU, US, Japan, China and India under different climate scenarios," Energy Policy, Elsevier, vol. 88(C), pages 148-158.
    12. Gabriele Battista & Emiliano Carnielo & Luca Evangelisti & Marco Frascarolo & Roberto De Lieto Vollaro, 2015. "Energy Performance and Thermal Comfort of a High Efficiency House: RhOME for denCity, Winner of Solar Decathlon Europe 2014," Sustainability, MDPI, vol. 7(7), pages 1-15, July.
    13. Barros, C.P. & Assaf, A., 2009. "Bootstrapped efficiency measures of oil blocks in Angola," Energy Policy, Elsevier, vol. 37(10), pages 4098-4103, October.
    14. Joelsson, Jonas & Gustavsson, Leif, 2012. "Swedish biomass strategies to reduce CO2 emission and oil use in an EU context," Energy, Elsevier, vol. 43(1), pages 448-468.
    15. Verbruggen, Aviel & Al Marchohi, Mohamed, 2010. "Views on peak oil and its relation to climate change policy," Energy Policy, Elsevier, vol. 38(10), pages 5572-5581, October.
    16. Bendjebbas, H. & Abdellah-ElHadj, A. & Abbas, M., 2016. "Full-scale, wind tunnel and CFD analysis methods of wind loads on heliostats: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 452-472.
    17. Aloise de Seabra, Alessandra & Khosrovyan, Alla & Del Valls, T. Angel & Polette, Marcus, 2015. "Management of pre-salt oil royalties: Wealth or poverty for Brazilian coastal zones as a result?," Resources Policy, Elsevier, vol. 45(C), pages 1-8.
    18. Liam Wagner & Ian Ross & John Foster & Ben Hankamer, 2013. "Tracking global fuel supply, CO2 emissions and sustainable development," Energy Economics and Management Group Working Papers 7-2013, School of Economics, University of Queensland, Australia.
    19. Bebbington, Jan & Schneider, Thomas & Stevenson, Lorna & Fox, Alison, 2020. "Fossil fuel reserves and resources reporting and unburnable carbon: Investigating conflicting accounts," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 66(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3517-:d:1437371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.