IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3488-d1436122.html
   My bibliography  Save this article

The Impact of Wide Discharge C-Rates on the Voltage Plateau Performance of Cylindrical Ternary Lithium-Ion Batteries

Author

Listed:
  • Xingxing Wang

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China
    School of Rail Transportation, Soochow University, Suzhou 215131, China)

  • Yuhang Chen

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China)

  • Linfei Chen

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China)

  • Shengren Liu

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China)

  • Yu Zhu

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China)

  • Yelin Deng

    (School of Rail Transportation, Soochow University, Suzhou 215131, China)

Abstract

Battery voltage plateau characteristics are crucial for designing and controlling battery management systems. Utilising the plateau period attributes to their fullest extent can enable optimal battery control, enhance battery performance, and prolong battery lifespan. This research aimed to investigate the performance of cylindrical ternary lithium batteries at various discharge rates, focusing on the variations in terminal voltage, capacity, and temperature. The battery performance at different discharge rates was meticulously examined through cyclic charge/discharge experiments. The convexity of the voltage curve was used to analyse the voltage plateau characteristics at different rates. The findings revealed significant differences in battery performance under varying discharge rates. Higher discharge rates resulted in shorter discharge times and lower battery voltages at corresponding residual capacities. The discharge time, capacity, and voltage during the plateau phase decreased as the discharge rate increased. At discharge rates of 1 C, 3 C, 5 C, 7 C, 9 C, and 11 C, the proportion of discharged battery capacity ranged from 86.45% to 78.42%. At the same time, voltage and temperature variations during the plateau period decreased significantly compared to those before and after discharge. This research provides a crucial reference point for advancing battery design and thermal management systems.

Suggested Citation

  • Xingxing Wang & Yuhang Chen & Linfei Chen & Shengren Liu & Yu Zhu & Yelin Deng, 2024. "The Impact of Wide Discharge C-Rates on the Voltage Plateau Performance of Cylindrical Ternary Lithium-Ion Batteries," Energies, MDPI, vol. 17(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3488-:d:1436122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3488/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Tingting & Wang, Changhong & Hu, Yanxin & Liang, Zhixuan & Fan, Changxiang, 2023. "Research on electrochemical characteristics and heat generating properties of power battery based on multi-time scales," Energy, Elsevier, vol. 265(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Li & Yigang Kong & Changjiang Wang & Xueliang Wang & Min Wang & Yulong Wang, 2024. "Relevance-Based Reconstruction Using an Empirical Mode Decomposition Informer for Lithium-Ion Battery Surface-Temperature Prediction," Energies, MDPI, vol. 17(19), pages 1-16, October.
    2. Zha, Yunfei & He, Shunquan & Meng, Xianfeng & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Heat dissipation performance research between drop contact and immersion contact of lithium-ion battery cooling," Energy, Elsevier, vol. 279(C).
    3. Chang, Chun & Pan, Yaliang & Wang, Shaojin & Jiang, Jiuchun & Tian, Aina & Gao, Yang & Jiang, Yan & Wu, Tiezhou, 2024. "Fast EIS acquisition method based on SSA-DNN prediction model," Energy, Elsevier, vol. 288(C).
    4. Yetik, Ozge & Morali, Ugur & Karakoc, Tahir Hikmet, 2023. "A numerical study of thermal management of lithium-ion battery with nanofluid," Energy, Elsevier, vol. 284(C).
    5. Liu, Yongjie & Huang, Zhiwu & He, Liang & Pan, Jianping & Li, Heng & Peng, Jun, 2023. "Temperature-aware charging strategy for lithium-ion batteries with adaptive current sequences in cold environments," Applied Energy, Elsevier, vol. 352(C).
    6. Zeng, Jiawei & Wang, Shunli & Cao, Wen & Zhou, Yifei & Fernandez, Carlos & Guerrero, Josep M., 2024. "Battery asynchronous fractional-order thermoelectric coupling modeling and state of charge estimation based on frequency characteristic separation at low temperatures," Energy, Elsevier, vol. 307(C).
    7. Lin, Mingqiang & Wu, Jian & Meng, Jinhao & Wang, Wei & Wu, Ji, 2023. "State of health estimation with attentional long short-term memory network for lithium-ion batteries," Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3488-:d:1436122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.