IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3390-d1432572.html
   My bibliography  Save this article

An Improved Control Method of DC Voltage for Series Hybrid Active Power Filter

Author

Listed:
  • Jianben Liu

    (State Key Laboratory of Power Grid Environmental Protection, China Electric Power Research Institute, Wuhan 430074, China)

  • Yuan Ni

    (State Key Laboratory of Power Grid Environmental Protection, China Electric Power Research Institute, Wuhan 430074, China)

  • Jun Zhao

    (State Key Laboratory of Power Grid Environmental Protection, China Electric Power Research Institute, Wuhan 430074, China)

Abstract

DC voltage is one of the important parameters of active power filters. Since the series hybrid active power filter does not withstand the fundamental voltage, it cannot absorb energy from the power grid, making it too difficult to control its DC voltage. In order to solve the DC voltage control problem, an improved control method for the series hybrid active power filter with magnetic flux compensation is proposed in this paper. In this improved method, the fundamental magnetic flux compensation coefficient is equal to 1, meeting the condition of fundamental magnetic flux compensation. This improved method does not rely on the precise detection and phase-locking of the fundamental voltage at the port of the series transformer. A phase-fixed active current component is generated directly by the inverter, enabling the active power filter (APF) to absorb active power from the power grid. Consequently, the active power absorbed by the APF from the power grid has a linear relationship with the active current component. Both simulation and experimentation verified the correctness and effectiveness of this proposed method.

Suggested Citation

  • Jianben Liu & Yuan Ni & Jun Zhao, 2024. "An Improved Control Method of DC Voltage for Series Hybrid Active Power Filter," Energies, MDPI, vol. 17(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3390-:d:1432572
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3390/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3390/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Ammirrul Atiqi Mohd Zainuri & Mohd Amran Mohd Radzi & Azura Che Soh & Norman Mariun & Nasrudin Abd Rahim & Shahrooz Hajighorbani, 2016. "Fundamental Active Current Adaptive Linear Neural Networks for Photovoltaic Shunt Active Power Filters," Energies, MDPI, vol. 9(6), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "A Self-Tuning Filter-Based Adaptive Linear Neuron Approach for Operation of Three-Level Inverter-Based Shunt Active Power Filters under Non-Ideal Source Voltage Conditions," Energies, MDPI, vol. 10(5), pages 1-28, May.
    2. Dawid Buła & Dariusz Grabowski & Andrzej Lange & Marcin Maciążek & Marian Pasko, 2020. "Long- and Short-Term Comparative Analysis of Renewable Energy Sources," Energies, MDPI, vol. 13(14), pages 1-18, July.
    3. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation: A Review," Energies, MDPI, vol. 10(12), pages 1-29, December.
    4. Soumya Ranjan Das & Prakash Kumar Ray & Arun Kumar Sahoo & Somula Ramasubbareddy & Thanikanti Sudhakar Babu & Nallapaneni Manoj Kumar & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2021. "A Comprehensive Survey on Different Control Strategies and Applications of Active Power Filters for Power Quality Improvement," Energies, MDPI, vol. 14(15), pages 1-32, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3390-:d:1432572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.