IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3295-d1429224.html
   My bibliography  Save this article

BIM Integration with XAI Using LIME and MOO for Automated Green Building Energy Performance Analysis

Author

Listed:
  • Abdul Mateen Khan

    (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS Bandar, Seri Iskandar 32610, Perak, Malaysia
    Department of Civil Engineering, International Islamic University, Islamabad 44000, Pakistan)

  • Muhammad Abubakar Tariq

    (Department of Civil Engineering, International Islamic University, Islamabad 44000, Pakistan)

  • Sardar Kashif Ur Rehman

    (Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan)

  • Talha Saeed

    (Department of Computer Science, University of Wah, Wah Cantt 47040, Pakistan)

  • Fahad K. Alqahtani

    (Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

  • Mohamed Sherif

    (Civil and Environmental Engineering Department, College of Engineering, University of Hawai’i at Manoa, Honolulu, HI 96822, USA)

Abstract

Achieving sustainable green building design is essential to reducing our environmental impact and enhancing energy efficiency. Traditional methods often depend heavily on expert knowledge and subjective decisions, posing significant challenges. This research addresses these issues by introducing an innovative framework that integrates building information modeling (BIM), explainable artificial intelligence (AI), and multi-objective optimization. The framework includes three main components: data generation through DesignBuilder simulation, a BO-LGBM (Bayesian optimization–LightGBM) predictive model with LIME (Local Interpretable Model-agnostic Explanations) for energy prediction and interpretation, and the multi-objective optimization technique AGE-MOEA to address uncertainties. A case study demonstrates the framework’s effectiveness, with the BO-LGBM model achieving high prediction accuracy (R-squared > 93.4%, MAPE < 2.13%) and LIME identifying significant HVAC system features. The AGE-MOEA optimization resulted in a 13.43% improvement in energy consumption, CO 2 emissions, and thermal comfort, with an additional 4.0% optimization gain when incorporating uncertainties. This study enhances the transparency of machine learning predictions and efficiently identifies optimal passive and active design solutions, contributing significantly to sustainable construction practices. Future research should focus on validating its real-world applicability, assessing its generalizability across various building types, and integrating generative design capabilities for automated optimization.

Suggested Citation

  • Abdul Mateen Khan & Muhammad Abubakar Tariq & Sardar Kashif Ur Rehman & Talha Saeed & Fahad K. Alqahtani & Mohamed Sherif, 2024. "BIM Integration with XAI Using LIME and MOO for Automated Green Building Energy Performance Analysis," Energies, MDPI, vol. 17(13), pages 1-36, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3295-:d:1429224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiang, Xiwang & Ma, Minda & Ma, Xin & Chen, Liming & Cai, Weiguang & Feng, Wei & Ma, Zhili, 2022. "Historical decarbonization of global commercial building operations in the 21st century," Applied Energy, Elsevier, vol. 322(C).
    2. Scott C. Manley & Joseph F. Hair & Ralph I. Williams & William C. McDowell, 2021. "Essential new PLS-SEM analysis methods for your entrepreneurship analytical toolbox," International Entrepreneurship and Management Journal, Springer, vol. 17(4), pages 1805-1825, December.
    3. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
    4. Chen, Xia & Geyer, Philipp, 2022. "Machine assistance in energy-efficient building design: A predictive framework toward dynamic interaction with human decision-making under uncertainty," Applied Energy, Elsevier, vol. 307(C).
    5. Xilian Wang & Lihang Qu & Yueying Wang & Helin Xie, 2023. "Dynamic Scenario Predictions of Peak Carbon Emissions in China’s Construction Industry," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    6. Ciardiello, Adriana & Rosso, Federica & Dell'Olmo, Jacopo & Ciancio, Virgilio & Ferrero, Marco & Salata, Ferdinando, 2020. "Multi-objective approach to the optimization of shape and envelope in building energy design," Applied Energy, Elsevier, vol. 280(C).
    7. Seyedzadeh, Saleh & Pour Rahimian, Farzad & Oliver, Stephen & Rodriguez, Sergio & Glesk, Ivan, 2020. "Machine learning modelling for predicting non-domestic buildings energy performance: A model to support deep energy retrofit decision-making," Applied Energy, Elsevier, vol. 279(C).
    8. Stefano Cascone, 2023. "Digital Technologies and Sustainability Assessment: A Critical Review on the Integration Methods between BIM and LEED," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    9. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    10. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Purcell, Karl & Hoare, Cathal & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making," Applied Energy, Elsevier, vol. 279(C).
    11. Ye Li & Shixuan Li & Shiyao Xia & Bojia Li & Xinyu Zhang & Boyuan Wang & Tianzhen Ye & Wandong Zheng, 2023. "A Review on the Policy, Technology and Evaluation Method of Low-Carbon Buildings and Communities," Energies, MDPI, vol. 16(4), pages 1-43, February.
    12. Forde, Joe & Hopfe, Christina J. & McLeod, Robert S. & Evins, Ralph, 2020. "Temporal optimization for affordable and resilient Passivhaus dwellings in the social housing sector," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    3. Hu, Yuqing & Cheng, Xiaoyuan & Wang, Suhang & Chen, Jianli & Zhao, Tianxiang & Dai, Enyan, 2022. "Times series forecasting for urban building energy consumption based on graph convolutional network," Applied Energy, Elsevier, vol. 307(C).
    4. Fan, Cheng & Lei, Yutian & Sun, Yongjun & Piscitelli, Marco Savino & Chiosa, Roberto & Capozzoli, Alfonso, 2022. "Data-centric or algorithm-centric: Exploiting the performance of transfer learning for improving building energy predictions in data-scarce context," Energy, Elsevier, vol. 240(C).
    5. Ghafoori, Mahdi & Abdallah, Moatassem & Kim, Serena, 2023. "Electricity peak shaving for commercial buildings using machine learning and vehicle to building (V2B) system," Applied Energy, Elsevier, vol. 340(C).
    6. Ma, Dingyuan & Li, Xiaodong & Lin, Borong & Zhu, Yimin, 2023. "An intelligent retrofit decision-making model for building program planning considering tacit knowledge and multiple objectives," Energy, Elsevier, vol. 263(PB).
    7. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).
    8. Hassan, Ahmed A. & El-Rayes, Khaled, 2024. "Optimal use of renewable energy technologies during building schematic design phase," Applied Energy, Elsevier, vol. 353(PA).
    9. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    10. Junhui Huang & Sakdirat Kaewunruen, 2023. "Forecasting Energy Consumption of a Public Building Using Transformer and Support Vector Regression," Energies, MDPI, vol. 16(2), pages 1-15, January.
    11. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    12. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    13. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    14. Jiang, Hong-Dian & Pradhan, Basanta K. & Dong, Kangyin & Yu, Yan-Yan & Liang, Qiao-Mei, 2024. "An economy-wide impacts of multiple mitigation pathways toward carbon neutrality in China: A CGE-based analysis," Energy Economics, Elsevier, vol. 129(C).
    15. Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).
    16. Germán Arana-Landín & Naiara Uriarte-Gallastegi & Beñat Landeta-Manzano & Iker Laskurain-Iturbe, 2023. "The Contribution of Lean Management—Industry 4.0 Technologies to Improving Energy Efficiency," Energies, MDPI, vol. 16(5), pages 1-19, February.
    17. Luigi Maffei & Antonio Ciervo & Achille Perrotta & Massimiliano Masullo & Antonio Rosato, 2023. "Innovative Energy-Efficient Prefabricated Movable Buildings for Smart/Co-Working: Performance Assessment upon Varying Building Configurations," Sustainability, MDPI, vol. 15(12), pages 1-37, June.
    18. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    19. Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
    20. Konstantinos Sofias & Zoe Kanetaki & Constantinos Stergiou & Sébastien Jacques, 2023. "Combining CAD Modeling and Simulation of Energy Performance Data for the Retrofit of Public Buildings," Sustainability, MDPI, vol. 15(3), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3295-:d:1429224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.