IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3130-d1421889.html
   My bibliography  Save this article

Joint Deployment of Sensors and Chargers in Wireless Rechargeable Sensor Networks

Author

Listed:
  • Jie Lian

    (Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China)

  • Haiqing Yao

    (Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China)

Abstract

As a promising technology to achieve the permanent operation of battery-powered wireless sensor devices, wireless rechargeable sensor networks (WRSNs) by radio-frequency radiation have attracted considerable attention in recent years. Determining how to save the deployment cost of WRSNs has been a hot topic. Previous scholars have mainly studied the cost of deploying chargers, thus ignoring the impact of sensor deployment on the network. Therefore, we consider the new problem of joint deployment of sensors and chargers on a two-dimensional plane, i.e., deploying the minimum number of sensors and chargers used to monitor points of interest (PoIs). Considering the interaction of deployed sensors and chargers, we divide the problem into two stages, P1 and P2. P1 addresses the sensor deployment, while P2 addresses the deployment of chargers. Both P1 and P2 have proved to be NP-hard. Meanwhile, we notice that the aggregation effect of sensors can effectively reduce the number of chargers deployed; therefore, we propose a greedy heuristic approximate solution for deploying sensors by using the aggregation effect (GHDSAE). Then, a greedy heuristic (GH) solution and a particle swarm optimization (PSO) solution are proposed for P2. The time complexity of these solutions is analyzed. Finally, extensive simulation results show that the PSO solution can always reduce the number of chargers deployed based on the GHDSAE solution sensor deployment approach. Therefore, it is more cost-effective to jointly deploy sensors and chargers by using the GHDSAE solution and the PSO solution.

Suggested Citation

  • Jie Lian & Haiqing Yao, 2024. "Joint Deployment of Sensors and Chargers in Wireless Rechargeable Sensor Networks," Energies, MDPI, vol. 17(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3130-:d:1421889
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3130/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3130-:d:1421889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.