Author
Listed:
- Ming Cheng
(School of Electrical Engineering, Shenyang University of Technology, Shenyang 110807, China)
- Zhiye Li
(School of Electrical Engineering, Shenyang University of Technology, Shenyang 110807, China)
- Shibo Xu
(School of Electrical Engineering, Shenyang University of Technology, Shenyang 110807, China)
- Ruilin Pei
(School of Electrical Engineering, Shenyang University of Technology, Shenyang 110807, China)
Abstract
Ultra-high-speed permanent magnet motors (UHSPPMs) are gradually increasing in the number of scenarios to realize energy saving and emission reduction due to their advantages such as high power density and fast response speed, and their accurate design and analysis are becoming more and more important. UHSPMMs need to consider the effects of multiple physical fields such as electromagnetism, force, and heat on their performance and structure due to their high rotational speed and small size. In this paper, firstly, the loss of each component of the motor is accurately calculated, and the distribution of the flow field and temperature field inside the motor is obtained by computational fluid dynamics (CFD) to determine the limiting working conditions of each component of the motor. Secondly, the mechanical stresses of the rotor are calculated at different limiting working conditions, especially the checking of the stresses of the permanent magnets and the sleeves when they are working at different temperature gradients, in order to improve the reliability of the ultra-high-speed rotor. Furthermore, the dynamics analysis is performed for the whole rotor system to ensure stable operation for a long time at the rated working conditions. Finally, the dynamics of the whole rotor system is analyzed to ensure that the ultra-high-speed permanent magnet rotor can operate stably for a long period of time at the rated operating conditions. Based on the theoretical calculations and analyses, a 25 kW, 95 krpm prototype was designed and fabricated, and relevant experimental studies were carried out. The correctness of the calculation of rotor mechanical properties under extreme working conditions (extreme speed and extreme temperature) is verified through tests, which achieved the target of design accuracy within 5%, and can provide great help to further improve the high-precision design of UHSPMMs.
Suggested Citation
Ming Cheng & Zhiye Li & Shibo Xu & Ruilin Pei, 2024.
"Design and Calculation of Multi-Physical Field of Ultra-High-Speed Permanent Magnet Motor,"
Energies, MDPI, vol. 17(13), pages 1-20, June.
Handle:
RePEc:gam:jeners:v:17:y:2024:i:13:p:3072-:d:1419763
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3072-:d:1419763. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.