IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2871-d1412931.html
   My bibliography  Save this article

Effects of Nanocoating on the Performance of Photovoltaic Solar Panels in Al Seeb, Oman

Author

Listed:
  • Girma T. Chala

    (Department of Mechanical Engineering (Well Engineering), International College of Engineering and Management, P.O. Box 2511, C.P.O Seeb, Muscat 111, Oman)

  • Shaharin A. Sulaiman

    (Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia)

  • Xuecheng Chen

    (Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Ave. 42, 71-065 Szczecin, Poland)

  • Salim S. Al Shamsi

    (Department of Mechanical Engineering (Well Engineering), International College of Engineering and Management, P.O. Box 2511, C.P.O Seeb, Muscat 111, Oman)

Abstract

Solar photovoltaic (PV) panels are projected to become the largest contributor of clean electricity generation worldwide. Maintenance and cleaning strategies are crucial for optimizing solar PV operations, ensuring a satisfactory economic return of investment. Nanocoating may have potential for optimizing PV operations; however, there is insufficient scientific evidence that supports this idea. Therefore, this study aims to investigate the effectiveness of nanocoating on the performance of solar photovoltaic (PV) panels installed in Al Seeb, Oman. A further study was also carried out to observe the influence of coating layers on the performance of PV panels. One SiO 2 nanocoated solar panel, another regularly cleaned PV panel, and a reference uncleaned panel were used to carry out the study. The site of the study was treeless and sandy, with a hot and dry climate. A data logger was connected to the solar PV panel and glass panel to record the resulting voltage, current, temperature, and solar radiation. It was observed that nanocoated PV panels outperformed both regular PV panels and uncleaned PV panels. Nanocoated PV panels demonstrated an average efficiency of 21.6%, showing a 31.7% improvement over uncleaned panels and a 9.6% improvement over regularly cleaned panels. Although nanocoating displayed high efficiency, regular cleaning also contributes positively. Furthermore, even though nanocoated PV panels outperformed the other two panels, it is important to note that the performance difference between the regular cleaned PV panels and the nanocoated PV panels was small. This indicates that regular cleaning strategies and nanocoating can further contribute to maintaining a more efficient solar PV system. Coating in many layers was also observed to influence the performance of PV panels insignificantly, mainly the fourth layer coating appeared to have formed sufficient mass to retain heat.

Suggested Citation

  • Girma T. Chala & Shaharin A. Sulaiman & Xuecheng Chen & Salim S. Al Shamsi, 2024. "Effects of Nanocoating on the Performance of Photovoltaic Solar Panels in Al Seeb, Oman," Energies, MDPI, vol. 17(12), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2871-:d:1412931
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2871/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2871/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boro, Bibha & Gogoi, B. & Rajbongshi, B.M. & Ramchiary, A., 2018. "Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2264-2270.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2871-:d:1412931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.