Author
Listed:
- Maria Kourmousi
(Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, 15771 Zografou, Greece)
- Fotios Kamatsos
(Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, 15771 Zografou, Greece)
- Christiana A. Mitsopoulou
(Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, 15771 Zografou, Greece
Research Institute of Energy-Renewable Sources and Transport, University Center of Research ‘Antonis Papadakis’, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece)
Abstract
This study aims to advance the field of green chemistry and catalysis by exploring alternatives to conventional non-renewable energy sources. Emphasis is placed on hydrogen as a potential fuel, with a focus on the catalytic properties of Ni(II) complexes when coordinated with o-phenylenediamine and diimine ligands. We report the synthesis and comprehensive characterization, with various physical and spectroscopic techniques, of three heteroleptic Ni(II) complexes: [Ni(1,10-phenanthroline)(o-phenylene diamine)] ( 1 ), [Ni(2,2-dimethyl-2,2-bipyridine)(o-phenylene diamine)] ( 2 ), and [Ni(5,5-dimethyl-2,2-bipyridine)(o-phenylene diamine)] ( 3 ). The catalytic activity of these complexes for hydrogen evolution was assessed through photochemical studies utilizing visible light irradiation. Two distinct photosensitizers, fluorescein and quantum dots, were examined under diverse conditions. Additionally, their electrocatalytic behavior was investigated to elucidate the hydrogen evolution reaction (HER) mechanism, revealing a combined proton-coupled electron transfer (PCET)/electron-coupled proton transfer (ECPT) mechanism attributed to the chemical nature of the diamine ligand. The influence of ligand substituent position, ligand chemical nature, and photosensitizer type on catalytic performance was systematically studied. Among the complexes investigated, complex 2 demonstrated superior catalytic performance, achieving a turnover number (TON) of 3357 in photochemical experiments using fluorescein as a photosensitizer. Conversely, complex 1 exhibited the highest TON of 30,066 for HER when quantum dots were employed as the photosensitizer.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2777-:d:1409499. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.