Author
Listed:
- Robert Jane
(DEVCOM Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
These authors contributed equally to this work.)
- Samantha Rose
(Department of Chemistry and Life Science, United States Military Academy, Bldg. 753, West Point, NY 10996, USA
These authors contributed equally to this work.)
- Corey M. James
(Department of Chemistry and Life Science, United States Military Academy, Bldg. 753, West Point, NY 10996, USA)
Abstract
In a previous research effort by this group, pseudo engine dynamometer data in multi-dimensional arrays were combined with dynamic equations to form a crank angle resolved engine model compatible with a real-time simulator. The combination of the real-time simulator and external targets enabled the development of a software-in-the-loop (SIL) environment that enabled near-real-time development of AI/ML and real-time deployment of the resulting AI/ML. Military applications, in particular, are unlikely to possess large quantities of non-sparse operational data that span the full operational range of the system, stove-piping the ability to develop and deploy AI/ML which is sufficient for near-real-time or real-time control. AI/ML has been shown to be well suited for predicting highly non-linear mathematical phenomena and thus military systems could potentially benefit from the development and deployment of AI/ML acting as soft sensors. Given the non-sparse nature of the data, it becomes exceedingly important that AI/ML be developed and deployed in near-real-time or real-time in parallel to a real-time system to overcome the inadequacy of applicable data. This research effort used parallel processing to reduce the training duration of the shallow artificial neural networks (SANN) and forest algorithms forming ensemble models. This research is novel in that the SIL environment enables pre-developed AI/ML to be adapted in near-real-time or develop AI/ML in response to changes within the operation of the applied system, different load torques, engine speeds, and atmospheric conditions to name a few. Over time it is expected that the continued adaptation of the algorithms will lead to the development of AI/ML that is suitable for real-time control and energy management.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2731-:d:1408272. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.