IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2635-d1404918.html
   My bibliography  Save this article

Site Selection of Wind Farms in Poland: Combining Theory with Reality

Author

Listed:
  • Artur Amsharuk

    (Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland)

  • Grażyna Łaska

    (Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland)

Abstract

With global shifts towards sustainable energy models, the urgency to address rising fossil fuel prices, military conflicts, and climate change concerns has become evident. The article aims to identify the development of wind energy in Poland. This study introduces an integrated methodology for enhancing renewable energy capacities by selecting new construction sites for onshore wind farms across Poland. The proposed methodology utilises a hybrid model incorporating multiple criteria decision-making methods, such as the Analytic Hierarchy Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), alongside the semiautomated spatial analysis method using QGiS software (v. 3.32 Lima). The model considers economic, social, and environmental criteria and limitations, offering a comprehensive approach to the decision-making process. It was found that wind farms occupy 460.7 km 2 in Poland, with a 250 m buffer around each turbine and a total power capacity of 5818 MW. The results show that an additional 7555.91 km 2 of selected areas, 2.34% of the country’s area, theoretically offer significant opportunities for wind energy development. The spatial analysis identifies potential sites with promising opportunities for domestic and international renewable energy investors. The study’s findings contribute towards achieving national and EU renewable energy targets while offering a replicable framework for informed spatial planning decisions in other regions.

Suggested Citation

  • Artur Amsharuk & Grażyna Łaska, 2024. "Site Selection of Wind Farms in Poland: Combining Theory with Reality," Energies, MDPI, vol. 17(11), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2635-:d:1404918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    2. Marta Resak & Barbara Rogosz & Jacek Szczepiński & Mariusz Dziamara, 2022. "Legal Conditions for Investments in Renewable Energy in the Overburden Disposal Areas in Poland," Sustainability, MDPI, vol. 14(3), pages 1-24, January.
    3. Artur Amsharuk & Grażyna Łaska, 2023. "The Approach to Finding Locations for Wind Farms Using GIS and MCDA: Case Study Based on Podlaskie Voivodeship, Poland," Energies, MDPI, vol. 16(20), pages 1-24, October.
    4. Lima-Junior, Francisco Rodrigues & Carpinetti, Luiz Cesar Ribeiro, 2016. "Combining SCOR® model and fuzzy TOPSIS for supplier evaluation and management," International Journal of Production Economics, Elsevier, vol. 174(C), pages 128-141.
    5. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziemba, Paweł, 2022. "Uncertain Multi-Criteria analysis of offshore wind farms projects investments – Case study of the Polish Economic Zone of the Baltic Sea," Applied Energy, Elsevier, vol. 309(C).
    2. Gökhan Şahin & Ahmet Koç & Sülem Şenyiğit Doğan & Wilfried van Sark, 2024. "Assessment of Wind Energy Potential and Optimal Site Selection for Wind Energy Plant Installations in Igdir/Turkey," Sustainability, MDPI, vol. 16(20), pages 1-30, October.
    3. Dimitris Ioannidis & Dimitra G. Vagiona, 2024. "Optimal Wind Farm Siting Using a Fuzzy Analytic Hierarchy Process: Evaluating the Island of Andros, Greece," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    4. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    5. Wimhurst, Joshua J. & Greene, J. Scott & Koch, Jennifer, 2023. "Predicting commercial wind farm site suitability in the conterminous United States using a logistic regression model," Applied Energy, Elsevier, vol. 352(C).
    6. Md Rabiul Islam & Md Rakibul Islam & Hosen M. Imran, 2022. "Assessing Wind Farm Site Suitability in Bangladesh: A GIS-AHP Approach," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    7. Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
    8. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    9. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    10. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    11. Yuanyuan He & Luxin Wan & Manli Zhang & Huijuan Zhao, 2022. "Regional Renewable Energy Installation Optimization Strategies with Renewable Portfolio Standards in China," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    12. Jiuping Xu & Xianglan Jiang & Zhibin Wu, 2016. "A Sustainable Performance Assessment Framework for Plastic Film Supply Chain Management from a Chinese Perspective," Sustainability, MDPI, vol. 8(10), pages 1-23, October.
    13. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    14. Elkadeem, Mohamed R. & Kotb, Kotb M. & Abido, Mohamed A. & Hasanien, Hany M. & Atiya, Eman G. & Almakhles, Dhafer & Elmorshedy, Mahmoud F., 2024. "Techno-enviro-socio-economic design and finite set model predictive current control of a grid-connected large-scale hybrid solar/wind energy system: A case study of Sokhna Industrial Zone, Egypt," Energy, Elsevier, vol. 289(C).
    15. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    16. Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
    17. Abdi, Ali & Astaraei, Fatemeh Razi & Rajabi, Nahid, 2024. "GIS-AHP-GAMS based analysis of wind and solar energy integration for addressing energy shortage in industries: A case study," Renewable Energy, Elsevier, vol. 225(C).
    18. Fatih Ecer, 2022. "Multi-criteria decision making for green supplier selection using interval type-2 fuzzy AHP: a case study of a home appliance manufacturer," Operational Research, Springer, vol. 22(1), pages 199-233, March.
    19. Fadlallah, Sulaiman O. & Benhadji Serradj, Djamal Eddine & Sedzro, Delight M., 2021. "Is this the right time for Sudan to replace diesel-powered generator systems with wind turbines?," Renewable Energy, Elsevier, vol. 180(C), pages 40-54.
    20. Geovanna Villacreses & Diego Jijón & Juan Francisco Nicolalde & Javier Martínez-Gómez & Franz Betancourt, 2022. "Multicriteria Decision Analysis of Suitable Location for Wind and Photovoltaic Power Plants on the Galápagos Islands," Energies, MDPI, vol. 16(1), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2635-:d:1404918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.