IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2549-d1401381.html
   My bibliography  Save this article

The Influence of Injector Nozzle Diameter on High-Density and Lean Mixture Combustion in Heavy-Duty Diesel Engines

Author

Listed:
  • Yize Liu

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Wanhua Su

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

Abstract

In order to improve the fuel economy of heavy-duty diesel engines under high-load conditions, based on the combustion pathway model, it is proposed that the proportion of lean mixture with 0 < Φ < 1 is the most important spray characteristic affecting the overall diesel combustion process. Answering the question of how to increase the proportion of lean mixture inside the spray is the key to achieving the efficient and clean combustion of diesel engines. This paper investigated the mechanism of injector nozzle diameter on the in-cylinder air–fuel mixture and combustion process based on a high-density and lean mixture characteristic combustion strategy. The experimental results show that with an increase in nozzle diameter, the peak pressure and instantaneous heat release rate significantly increase, the combustion duration is shortened by about 20%, and the heat release becomes more concentrated. At 1200 rpm and IMEPg~2.3 MPa conditions, the indicated thermal efficiency increases by 1.3%, reaching a maximum of 51.5%. The numerical simulation results show that with the increase in nozzle diameter from 0.169 mm to 0.218 mm, the spray ejection momentum per unit time increases by 30%, the momentum transferred to the air by the spray increases, the oxygen transport process becomes more intense, and the air entrainment mass during the spray free development stage increases by 42%. The proportion of lean mixture inside the spray throughout the entire spray development process increases, resulting in an increase in the heat release rate of the lean mixture, making the overall combustion more intense and concentrated.

Suggested Citation

  • Yize Liu & Wanhua Su, 2024. "The Influence of Injector Nozzle Diameter on High-Density and Lean Mixture Combustion in Heavy-Duty Diesel Engines," Energies, MDPI, vol. 17(11), pages 1-27, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2549-:d:1401381
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2549/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2549/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2549-:d:1401381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.