IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2397-d1396011.html
   My bibliography  Save this article

Long-Term Energy System Modelling for a Clean Energy Transition in Egypt’s Energy Sector

Author

Listed:
  • Anna Gibson

    (Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK)

  • Zen Makuch

    (Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK)

  • Rudolf Yeganyan

    (Centre for Sustainable Transitions: Energy, Environment and Resilience (STEER), Loughborough University, Loughborough LE11 3TU, UK)

  • Naomi Tan

    (Centre for Sustainable Transitions: Energy, Environment and Resilience (STEER), Loughborough University, Loughborough LE11 3TU, UK)

  • Carla Cannone

    (Centre for Sustainable Transitions: Energy, Environment and Resilience (STEER), Loughborough University, Loughborough LE11 3TU, UK)

  • Mark Howells

    (Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK
    Centre for Sustainable Transitions: Energy, Environment and Resilience (STEER), Loughborough University, Loughborough LE11 3TU, UK)

Abstract

Egypt has the potential to generate a significant amount of energy from renewable technologies, in particular solar PV, concentrated solar power (CSP), and onshore and offshore wind. The energy sector is reliant on fossil fuels, particularly natural gas, for electricity production and is at risk of locking itself into a high carbon pathway. Globally, reducing greenhouse gas (GHG) emissions associated with national energy sectors is a target outlined in the UN’s Paris Agreement. To reduce carbon dioxide (CO 2 ) emissions associated with a higher dependence on fossil fuels, Egypt must consider upscaling renewable energy technologies (RETs) to achieve a clean energy transition (CET). This research modelled six scenarios using clicSAND for OSeMOSYS to identify the technologies and policy target improvements that are needed to upscale RETs within Egypt’s energy sector. The results showed that solar PV and onshore wind are key technologies to be upscaled to contribute towards Egypt’s CET. The optimal renewable target is the International Renewable Energy Agency’s (IRENA) target of 53% of electricity being sourced from RETs by 2030, which will cost USD 16.4 billion more up to 2035 than Egypt’s current Integrated Sustainable Energy Strategy (ISES) target of 42% by 2035; it also saves 732.0 MtCO 2 over the entire modelling period to 2070. Socio-economic barriers to this transition are considered, such as recent discoveries of natural gas reserves combined with a history of energy insecurity, political instability impacting investor confidence, and a lack of international climate funding. The paper concludes with policy recommendations that would enable Egypt to progress towards achieving a CET.

Suggested Citation

  • Anna Gibson & Zen Makuch & Rudolf Yeganyan & Naomi Tan & Carla Cannone & Mark Howells, 2024. "Long-Term Energy System Modelling for a Clean Energy Transition in Egypt’s Energy Sector," Energies, MDPI, vol. 17(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2397-:d:1396011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Rady, Yassin Yehia & Rocco, Matteo V. & Serag-Eldin, M.A. & Colombo, Emanuela, 2018. "Modelling for power generation sector in Developing Countries: Case of Egypt," Energy, Elsevier, vol. 165(PB), pages 198-209.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cabello-López, Tomás & Carranza-García, Manuel & Riquelme, José C. & García-Gutiérrez, Jorge, 2023. "Forecasting solar energy production in Spain: A comparison of univariate and multivariate models at the national level," Applied Energy, Elsevier, vol. 350(C).
    2. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    3. Tanoto, Yusak & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Reliability-cost trade-offs for electricity industry planning with high variable renewable energy penetrations in emerging economies: A case study of Indonesia’s Java-Bali grid," Energy, Elsevier, vol. 227(C).
    4. Milena Kajba & Borut Jereb & Tina Cvahte Ojsteršek, 2023. "Exploring Digital Twins in the Transport and Energy Fields: A Bibliometrics and Literature Review Approach," Energies, MDPI, vol. 16(9), pages 1-23, May.
    5. Lee, Hwarang, 2023. "Decarbonization strategies for steel production with uncertainty in hydrogen direct reduction," Energy, Elsevier, vol. 283(C).
    6. El-Sayed, Ahmed Hassan A. & Khalil, Adel & Yehia, Mohamed, 2023. "Modeling alternative scenarios for Egypt 2050 energy mix based on LEAP analysis," Energy, Elsevier, vol. 266(C).
    7. He, Xianya & Lin, Jian & Xu, Jinmei & Huang, Jingzhi & Wu, Nianyuan & Zhang, Yining & Liu, Songling & Jing, Rui & Xie, Shan & Zhao, Yingru, 2023. "Long-term planning of wind and solar power considering the technology readiness level under China's decarbonization strategy," Applied Energy, Elsevier, vol. 348(C).
    8. ElSayed, Mai & Aghahosseini, Arman & Breyer, Christian, 2023. "High cost of slow energy transitions for emerging countries: On the case of Egypt's pathway options," Renewable Energy, Elsevier, vol. 210(C), pages 107-126.
    9. Tumiran & Lesnanto Multa Putranto & Sarjiya & Fransisco Danang Wijaya & Adi Priyanto & Ira Savitri, 2022. "Generation Expansion Planning Based on Local Renewable Energy Resources: A Case Study of the Isolated Ambon-Seram Power System," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    10. Lv, Fei & Wu, Qiong & Ren, Hongbo & Zhou, Weisheng & Li, Qifen, 2024. "On the design and analysis of long-term low-carbon roadmaps: A review and evaluation of available energy-economy-environment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Jacob Dalder & Gbemi Oluleye & Carla Cannone & Rudolf Yeganyan & Naomi Tan & Mark Howells, 2024. "Modelling Policy Pathways to Maximise Renewable Energy Growth and Investment in the Democratic Republic of the Congo Using OSeMOSYS (Open Source Energy Modelling System)," Energies, MDPI, vol. 17(2), pages 1-27, January.
    12. do Amaral, J.V.S. & dos Santos, C.H. & Montevechi, J.A.B. & de Queiroz, A.R., 2023. "Energy Digital Twin applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Sarjiya, & Putranto, Lesnanto Multa & Budi, Rizki Firmansyah Setya & Novitasari, Dwi & Deendarlianto, & Tumiran,, 2023. "Role of the energy-carbon-economy nexus and CO2 abatement cost in supporting energy policy analysis: A multi-scenario analysis of the Java-Bali system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    14. Ward Suijs & Sebastian Verhelst, 2023. "Scaling Performance Parameters of Reciprocating Engines for Sustainable Energy System Optimization Modelling," Energies, MDPI, vol. 16(22), pages 1-28, November.
    15. Marrero-Trujillo, Verónica & Arias-Gaviria, Jessica & Arango-Aramburo, Santiago & Larsen, Erik R., 2023. "Gamification model for communicating and evaluating renewable energy planning," Utilities Policy, Elsevier, vol. 84(C).
    16. Aikaterini Papapostolou & Charikleia Karakosta & Georgios Apostolidis & Haris Doukas, 2020. "An AHP-SWOT-Fuzzy TOPSIS Approach for Achieving a Cross-Border RES Cooperation," Sustainability, MDPI, vol. 12(7), pages 1-28, April.
    17. Carla Cannone & Lucy Allington & Nicki de Wet & Abhishek Shivakumar & Philip Goyns & Cesar Valderrama & Alexander Kell & Fernando Antonio Plazas Niño & Reema Mohanty & Vedran Kapor & Jarrad Wright & R, 2024. "clicSAND for OSeMOSYS: A User-Friendly Interface Using Open-Source Optimisation Software for Energy System Modelling Analysis," Energies, MDPI, vol. 17(16), pages 1-27, August.
    18. Palombelli, Andrea & Gardumi, Francesco & Rocco, MatteoVincenzo & Howells, Mark & Colombo, Emanuela, 2020. "Development of functionalities for improved storage modelling in OSeMOSYS," Energy, Elsevier, vol. 195(C).
    19. Lucarelli, Giuseppe & Genovese, Matteo & Florio, Gaetano & Fragiacomo, Petronilla, 2023. "3E (energy, economic, environmental) multi-objective optimization of CCHP industrial plant: Investigation of the optimal technology and the optimal operating strategy," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2397-:d:1396011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.