IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p61-d1305057.html
   My bibliography  Save this article

A Novel Voltage Sensorless Estimation Method for Modular Multilevel Converters with a Model Predictive Control Strategy

Author

Listed:
  • Yantao Liao

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China
    Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing 210096, China)

  • Long Jin

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China
    Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing 210096, China)

  • Jun You

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China
    Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing 210096, China)

  • Zhike Xu

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China
    Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing 210096, China)

  • Kaiyuan Liu

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China
    Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing 210096, China)

  • Hongbin Zhang

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China
    Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing 210096, China)

  • Zhan Shen

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China
    Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing 210096, China)

  • Fujin Deng

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China
    Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing 210096, China)

Abstract

This paper proposes a novel voltage estimation scheme for the modular multilevel converter (MMC) based on model predictive control (MPC). The developed strategy is presented by combining a disturbance observer (DOB) with an adaptive neural network (ANN) for voltage estimation in the MMC. Firstly, the ac-side and dc bus voltages are estimated as the disturbance items of the DOB which acts as the cost function during each control cycle and ensures the minimal computational cost. Then, the submodule (SM) capacitor voltage estimation is achieved based on the ANN with the estimated ac-side and dc bus voltages. The proposed method requires only one current sensor per arm and has a simple structure with three weights to be adjusted. Comprehensive simulation studies and experiments are presented to demonstrate its effectiveness and feasibility. The results indicate that the proposed method has a high accuracy, a fast dynamic response, and no effects on the original MPC performance.

Suggested Citation

  • Yantao Liao & Long Jin & Jun You & Zhike Xu & Kaiyuan Liu & Hongbin Zhang & Zhan Shen & Fujin Deng, 2023. "A Novel Voltage Sensorless Estimation Method for Modular Multilevel Converters with a Model Predictive Control Strategy," Energies, MDPI, vol. 17(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:61-:d:1305057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/61/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/61/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junda Li & Zhenbin Zhang & Zhen Li & Oluleke Babayomi, 2023. "Predictive Control of Modular Multilevel Converters: Adaptive Hybrid Framework for Circulating Current and Capacitor Voltage Fluctuation Suppression," Energies, MDPI, vol. 16(15), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuoya Wang & Liangliang Hao & Zemin Wang, 2024. "Short-Circuit Current Calculation of Flexible Direct Current Transmission Lines Considering Line Distribution Parameters," Energies, MDPI, vol. 17(15), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:61-:d:1305057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.