IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p227-d1311333.html
   My bibliography  Save this article

Reactive Power Compensation and Distortion Power Variation Identification in Extended Budeanu Power Theory for Single-Phase Systems

Author

Listed:
  • Zbigniew Sołjan

    (Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D Street, 15-351 Białystok, Poland)

  • Maciej Zajkowski

    (Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D Street, 15-351 Białystok, Poland)

  • Andrzej Borusiewicz

    (Department of Agronomy, Modern Technology and Informatics, International Academy of Applied Science, Studencka 19 Street, 18-402 Łomża, Poland)

Abstract

This article presents methods of reactive power compensation using passive elements in the form of a capacitor (C) or choke (L) and an LC structure selected in such a way as to lead to the minimization of the reactive current (reactive power) of a single-phase system. The adaptation of the parameters of a passive compensator, reducing reactive power and/or distortion power, was possible through the extended Budeanu theory. In addition, through the extended Budeanu theory and also through the knowledge of the equivalent parameters of the linear load, the obtained results of the increase in distortion power, depending on the structure of the passive compensator, were analyzed. The values listed in the tables, as well as the waveforms of the component currents of a single-phase linear load, were obtained based on calculations and simulation models in MATLAB/Simulink software R2023a.

Suggested Citation

  • Zbigniew Sołjan & Maciej Zajkowski & Andrzej Borusiewicz, 2023. "Reactive Power Compensation and Distortion Power Variation Identification in Extended Budeanu Power Theory for Single-Phase Systems," Energies, MDPI, vol. 17(1), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:227-:d:1311333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/227/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/227/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacek Maciej Stankiewicz, 2023. "Analysis of the Influence of the Skin Effect on the Efficiency and Power of the Receiver in the Periodic WPT System," Energies, MDPI, vol. 16(4), pages 1-22, February.
    2. Jacek Maciej Stankiewicz & Agnieszka Choroszucho & Adam Steckiewicz, 2021. "Estimation of the Maximum Efficiency and the Load Power in the Periodic WPT Systems Using Numerical and Circuit Models," Energies, MDPI, vol. 14(4), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Maciej Stankiewicz, 2023. "Estimation of the Influence of the Coil Resistance on the Power and Efficiency of the WPT System," Energies, MDPI, vol. 16(17), pages 1-22, August.
    2. Jacek Maciej Stankiewicz, 2023. "Analysis of the Wireless Power Transfer System Using a Finite Grid of Planar Circular Coils," Energies, MDPI, vol. 16(22), pages 1-15, November.
    3. Zbigniew Sołjan & Maciej Zajkowski, 2022. "Extension and Correction of Budeanu Power Theory Based on Currents’ Physical Components (CPC) Theory for Single-Phase Systems," Energies, MDPI, vol. 15(21), pages 1-18, November.
    4. Jacek Maciej Stankiewicz & Agnieszka Choroszucho, 2021. "Comparison of the Efficiency and Load Power in Periodic Wireless Power Transfer Systems with Circular and Square Planar Coils," Energies, MDPI, vol. 14(16), pages 1-24, August.
    5. Jacek Maciej Stankiewicz & Adam Steckiewicz & Agnieszka Choroszucho, 2023. "Analysis of Simultaneous WPT in Ultra-Low-Power Systems with Multiple Resonating Planar Coils," Energies, MDPI, vol. 16(12), pages 1-17, June.
    6. Zeeshan Ahmad & Zhonghan Wang & Zain ul Abidin Jaffri & Shudi Bao, 2022. "Accurate Theoretical Models for Frequency Diverse Array Based Wireless Power Transmission," Energies, MDPI, vol. 15(4), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:227-:d:1311333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.