IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p169-d1309079.html
   My bibliography  Save this article

Reuse of Oil Wells in Geothermal District Heating Networks: A Sustainable Opportunity for Cities of the Future

Author

Listed:
  • Claudio Alimonti

    (Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eu-dossiana 18, 00184 Roma, Italy
    Istituto di Geologia Ambientale e Geoingegneria (IGAG), Consiglio Nazionale delle Ricerche (CNR), Piazzale Aldo Moro 5, 00185 Roma, Italy)

  • Fabio Vitali

    (Engie Italia S.p.A., Viale Giorgio Ribotta 31, 00144 Roma, Italy)

  • Davide Scrocca

    (Istituto di Geologia Ambientale e Geoingegneria (IGAG), Consiglio Nazionale delle Ricerche (CNR), Piazzale Aldo Moro 5, 00185 Roma, Italy)

Abstract

Climate change and the energy crisis forced industrialized countries to contain CO 2 emissions and use indigenous renewable energy sources. Geothermal energy undoubtedly has great potential, particularly thermal energy, given that 48% of the final energy consumption in the EU20 countries in 2021 was related to heating and cooling systems. The present study verifies and compares the feasibility of realizing district heating systems in two different contexts: (i) depleted hydrocarbon fields with the repurposing of existing hydrocarbon wells into geothermal wells and (ii) areas with documented geothermal resources. The two selected case studies are located, respectively, near Romentino (Northern Italy, province of Novara) and Tuscania (Central Italy, province of Viterbo). Following an assessment of the geothermal resources in the two selected case studies, specific methodological tools have been developed to evaluate the energy demand in the municipalities and determine the projects’ economics. Both case studies show positive economic indices assuming heat tariffs aligned with the values recorded in the 2020–2021 period. However, our results show how reusing hydrocarbon wells in geothermal wells constitutes an excellent opportunity to access geothermal resources, significantly reducing the necessary investment and the mining risk and strongly improving the economics of the projects.

Suggested Citation

  • Claudio Alimonti & Fabio Vitali & Davide Scrocca, 2023. "Reuse of Oil Wells in Geothermal District Heating Networks: A Sustainable Opportunity for Cities of the Future," Energies, MDPI, vol. 17(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:169-:d:1309079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/169/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/169/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weinand, Jann Michael & McKenna, Russell & Kleinebrahm, Max & Mainzer, Kai, 2019. "Assessing the contribution of simultaneous heat and power generation from geothermal plants in off-grid municipalities," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Haji Molla Ali Tork, Mohammad Hossein & Houshfar, Ehsan & Ashjaee, Mehdi, 2024. "Integrating geothermal energy and a solar chimney to maximize renewable energy production: An analytical investigation of a novel hybrid system," Renewable Energy, Elsevier, vol. 230(C).
    3. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco, 2023. "Rigorous simulation of geothermal power plants to evaluate environmental performance of alternative configurations," Renewable Energy, Elsevier, vol. 207(C), pages 471-483.
    4. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    5. Jann Michael Weinand, 2020. "Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019," Energies, MDPI, vol. 13(6), pages 1-18, March.
    6. McGookin, Connor & Ó Gallachóir, Brian & Byrne, Edmond, 2021. "An innovative approach for estimating energy demand and supply to inform local energy transitions," Energy, Elsevier, vol. 229(C).
    7. Schifflechner, Christopher & Dawo, Fabian & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2020. "Thermodynamic comparison of direct supercritical CO2 and indirect brine-ORC concepts for geothermal combined heat and power generation," Renewable Energy, Elsevier, vol. 161(C), pages 1292-1302.
    8. Ma, Z.D. & Jia, G.S. & Cui, X. & Xia, Z.H. & Zhang, Y.P. & Jin, L.W., 2020. "Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer," Applied Energy, Elsevier, vol. 276(C).
    9. Weinand, Jann & Ried, Sabrina & Kleinebrahm, Max & McKenna, Russell & Fichtner, Wolf, 2020. "Identification of potential off-grid municipalities with 100% renewable energy supply," Working Paper Series in Production and Energy 40, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    10. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    11. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    12. Kleinebrahm, Max & Weinand, Jann Michael & Naber, Elias & McKenna, Russell & Ardone, Armin, 2023. "Analysing municipal energy system transformations in line with national greenhouse gas reduction strategies," Applied Energy, Elsevier, vol. 332(C).
    13. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:169-:d:1309079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.