IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3969-d1142229.html
   My bibliography  Save this article

Modeling and Harmonic Analysis of a Fractional-Order Zeta Converter

Author

Listed:
  • Lingling Xie

    (Guangxi Key Laboratory of Power System Optimization and Energy-Saving Technology, School of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Di Wan

    (Guangxi Key Laboratory of Power System Optimization and Energy-Saving Technology, School of Electrical Engineering, Guangxi University, Nanning 530004, China)

Abstract

The Zeta converter is an essential and widely used high-order converter. The current modeling studies on Zeta converters are based on the model that devices, such as capacitors and inductors, are of integer order. For this reason, this paper takes the Zeta converter as the research object and conducts an in-depth study on its fractional-order modeling. However, the existing modeling and analysis methods have high computational complexity, the analytical solutions of system variables are tedious, and it is difficult to describe the ripple changes of state variables. This paper combines the principle of harmonic balance with the equivalent small parameter method (ESPM); the approximate analytic steady-state solution of the state variable can be obtained in only three iterative steps in the whole solving process. The DC components and ripples of the state variables obtained by the proposed method were compared with those obtained by the Oustaloup’s filter-based approximation method; the symbolic period results obtained by ESPM had sufficient precision because they included more combinations of higher harmonics. Finally, the influence of fractional order on harmonics were analyzed. The obtained results show that the proposed method has the advantage of being less computational and easily describing changes in the ripple of the state variables. The simulation results are provided for validity of the theoretical analysis.

Suggested Citation

  • Lingling Xie & Di Wan, 2023. "Modeling and Harmonic Analysis of a Fractional-Order Zeta Converter," Energies, MDPI, vol. 16(9), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3969-:d:1142229
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3969/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3969/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erdal Şehirli, 2024. "LCL Trap Filter Analysis with a PFC Isolated Ćuk Converter Using SiC MOSFET for DCM," Energies, MDPI, vol. 17(3), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3969-:d:1142229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.