IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3869-d1138333.html
   My bibliography  Save this article

Numerical Simulation on the Influence of Inlet Flow Characteristics on the Performance of a Centrifugal Compressor

Author

Listed:
  • Xing Li

    (Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000, China
    College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China)

  • Ning Huang

    (Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000, China
    College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China)

  • Guanyan Chen

    (Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000, China
    College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China)

  • Yanli Zhang

    (China North Engine Research Institute, Tianjin 300400, China)

  • Yang Zhao

    (China North Engine Research Institute, Tianjin 300400, China)

  • Jie Zhang

    (Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000, China
    College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China)

  • Ding Tong

    (China North Engine Research Institute, Tianjin 300400, China)

Abstract

Although inlet bent pipes are usually adopted due to limited installation space, the influences of different bend pipes on the inlet flow characteristics and performance of centrifugal compressors are still unclear. The numerical simulation of a centrifugal compressor is established and validated by experimental results with the case of a straight inlet pipe. Then, the internal flow characteristics of the centrifugal compressor with a 90-degree bent pipe (p 90 ) and Z-shaped bent pipe (p z ) are simulated and discussed. The results show that the adoption of two inlet bent pipes reduces the performance of the centrifugal compressor to a certain extent, which reduces more greatly with p z , with a maximum reduction of 6.82% in pressure ratio and 14.83% in efficiency, respectively. The pressure ratio and efficiency reduction of the centrifugal compressor both increase with the increment of distortion degree, which maintains the increasing trend as the flow rate increases, and the maximum distortion degree of p 90 and p z reaches 0.0351 and 0.0479, respectively. The reduction degree of the pressure ratio shows a power–law relationship with the distortion degree, while the reduction degree of efficiency shows an exponential relationship with it. The flow characteristics at the outlet section of the inlet pipe affect the flow field distribution at the inlet of the impeller, and the distortion area ranges of the total pressure and axial velocity at the inlet of the impeller are near 72°–144° in the circumferential direction for p 90 , while those of p z are close to 108°–180° and 288°–360°. When the flow with a high distortion degree enters the impeller, a large area with high turbulent kinetic energy is formed in the downstream flow channel, resulting in an increase in the flow loss.

Suggested Citation

  • Xing Li & Ning Huang & Guanyan Chen & Yanli Zhang & Yang Zhao & Jie Zhang & Ding Tong, 2023. "Numerical Simulation on the Influence of Inlet Flow Characteristics on the Performance of a Centrifugal Compressor," Energies, MDPI, vol. 16(9), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3869-:d:1138333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3869/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3869/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlo Cravero & Philippe Joe Leutcha & Davide Marsano, 2022. "Simulation and Modeling of Ported Shroud Effects on Radial Compressor Stage Stability Limits," Energies, MDPI, vol. 15(7), pages 1-20, April.
    2. Guangfeng An & Zhu Fan & Ying Qiu & Ruoyu Wang & Xianjun Yu & Baojie Liu, 2022. "Numerical Investigation of the Effect of Hub Gaps on the 3D Flows Inside the Stator of a Highly Loaded Axial Compressor Stage," Energies, MDPI, vol. 15(19), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongyan Tian & Kang Hou & Ding Tong & Sen Lin & Chicheng Ma, 2023. "Effect of Leading/Trailing Edge Swept Impeller on Flow Characteristics of Low Specific Speed Centrifugal Compressor," Energies, MDPI, vol. 16(11), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feichao Cai & Guanhong Huang & Xiaowei Liu, 2022. "Investigation of Shock Wave Oscillation Suppression by Overflow in the Supersonic Inlet," Energies, MDPI, vol. 15(11), pages 1-19, May.
    2. Peng Song & Shengyuan Wang & Jinju Sun, 2022. "Numerical Investigation and Performance Enhancement by Means of Geometric Sensitivity Analysis and Parametric Tuning of a Radial-Outflow High-Pressure Oil–Gas Turbine," Energies, MDPI, vol. 15(22), pages 1-21, November.
    3. Carlo Cravero & Davide Marsano, 2024. "Instability Phenomena in Centrifugal Compressors and Strategies to Extend the Operating Range: A Review," Energies, MDPI, vol. 17(5), pages 1-27, February.
    4. Riyadh Belamadi & Abdelhakim Settar & Khaled Chetehouna & Adrian Ilinca, 2022. "Numerical Modeling of Horizontal Axis Wind Turbine: Aerodynamic Performances Improvement Using an Efficient Passive Flow Control System," Energies, MDPI, vol. 15(13), pages 1-21, July.
    5. Jia-Xuan Liu & Fu-Sheng Yang & Tian-Qing Huo & Jian-Qiang Deng & Zao-Xiao Zhang, 2022. "Analysis of Impact of a Novel Combined Casing Treatment on Flow Characteristics and Performance of a Transonic Compressor," Energies, MDPI, vol. 15(14), pages 1-17, July.
    6. Ziliang Li & Yanhui Wu & Xingen Lu, 2022. "Performance Improvement of a Highly Loaded Transonic Centrifugal Compressor with Tandem Impeller and Freeform Blade Configuration," Energies, MDPI, vol. 15(24), pages 1-21, December.
    7. Jiajia Ji & Jun Hu & Shuai Ma & Rong Xu, 2022. "A Computational Method of Rotating Stall and Surge Transients in Axial Compressor," Energies, MDPI, vol. 15(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3869-:d:1138333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.