IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3842-d1136853.html
   My bibliography  Save this article

Realistic μPMU Data Generation for Different Real-Time Events in an Unbalanced Distribution Network

Author

Listed:
  • Abdul Haleem Medattil Ibrahim

    (Department of Electrical and Electronics Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
    Department of Electrical Sustainable Energy, Delft University of Technology, 2628 CD Delft, The Netherlands)

  • Madhu Sharma

    (Department of Electrical and Electronics Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India)

  • Vetrivel Subramaniam Rajkumar

    (Department of Electrical Sustainable Energy, Delft University of Technology, 2628 CD Delft, The Netherlands)

Abstract

Monitoring, protection, and control processes are becoming more complex as distributed energy resources (DERs) penetrate distribution networks (DNs). This is due to the inherent nature of power DNs and the bi-directional flow of current from various sources to the loads. To improve the system’s situational awareness, the grid dynamics of the entire DER integration processes must be carefully monitored using synchronized high-resolution real-time measurement data from physical devices installed in the DN. μPMUs have been introduced into the DN to help with this. In comparison to traditional measurement devices, μPMUs can measure voltage, current, and their phasors, in addition to frequency and rate of frequency change (ROCOF). In this study, an approach to generating realistic event data for a real utility DN utilizing strategically installed μPMUs is proposed. The method employs an IEEE 34 test feeder with 12 μPMUs installed in strategic locations to generate real-time events-based realistic μPMU data for various situational awareness applications in an unbalanced DN. The node voltages and line currents were used to analyze the various no-fault and fault events. The author generated the data as part of his PhD research project, utilizing his real-time utility grid operation experience to be used for various situational awareness and fault location studies in a real unbalanced DN. The DN was modeled in DIgSILENT PowerFactory (DP) software. The generated realistic μPMU data can be utilized for developing data-driven algorithms for different event-detection, classification and section-identification research works.

Suggested Citation

  • Abdul Haleem Medattil Ibrahim & Madhu Sharma & Vetrivel Subramaniam Rajkumar, 2023. "Realistic μPMU Data Generation for Different Real-Time Events in an Unbalanced Distribution Network," Energies, MDPI, vol. 16(9), pages 1-42, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3842-:d:1136853
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dashti, Rahman & Ghasemi, Mohsen & Daisy, Mohammad, 2018. "Fault location in power distribution network with presence of distributed generation resources using impedance based method and applying π line model," Energy, Elsevier, vol. 159(C), pages 344-360.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeid Khavari & Rahman Dashti & Hamid Reza Shaker & Athila Santos, 2020. "High Impedance Fault Detection and Location in Combined Overhead Line and Underground Cable Distribution Networks Equipped with Data Loggers," Energies, MDPI, vol. 13(9), pages 1-15, May.
    2. Mingzhen Li & Jialong Bu & Yupeng Song & Zhongyi Pu & Yuli Wang & Cheng Xie, 2021. "A Novel Fault Location Method for Power Cables Based on an Unsupervised Learning Algorithm," Energies, MDPI, vol. 14(4), pages 1-19, February.
    3. Bin Yang & Zhanran Xia & Xinyun Gao & Jing Tu & Hao Zhou & Jun Wu & Mingzhen Li, 2022. "Research on the Application of Uncertainty Quantification (UQ) Method in High-Voltage (HV) Cable Fault Location," Energies, MDPI, vol. 15(22), pages 1-15, November.
    4. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi & Nikta Chireh, 2019. "A Fast Fault Identification in a Grid-Connected Photovoltaic System Using Wavelet Multi-Resolution Singular Spectrum Entropy and Support Vector Machine," Energies, MDPI, vol. 12(13), pages 1-18, June.
    5. Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
    6. Farshchian, Ghazaleh & Darestani, Soroush Avakh & Hamidi, Naser, 2021. "Developing a decision-making dashboard for power losses attributes of Iran’s electricity distribution network," Energy, Elsevier, vol. 216(C).
    7. Ehsan Gord & Rahman Dashti & Mojtaba Najafi & Hamid Reza Shaker, 2019. "Real Fault Section Estimation in Electrical Distribution Networks Based on the Fault Frequency Component Analysis," Energies, MDPI, vol. 12(6), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3842-:d:1136853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.