IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3712-d1133475.html
   My bibliography  Save this article

Suppression Measures of Partial Discharge at Rod–Plate Connection in Composite Tower

Author

Listed:
  • Jinpeng Hao

    (State Grid Ningxia Electric Power Research Institute, Yinchuan 750011, China)

  • Jinzhu Huang

    (Power Grid Guyuan Electric Power Supply Company, Guyuan 756000, China)

  • Ziyi Fang

    (State Grid Ningxia Electric Power Research Institute, Yinchuan 750011, China)

  • Xiao He

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Qiang Wu

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Xiaolong Gu

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Yu Wang

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Hong Wu

    (State Grid Ningxia Electric Power Research Institute, Yinchuan 750011, China)

Abstract

Rods and plates at the connections in composite insulating material towers are commonly fixed to each other by metal bolts, which may cause electrical field distortion at the connections. So, the rod–plate connections are prone to partial discharge under polluted and wet conditions, and the resulting electric field and temperature changes can affect the mechanical and electrical performance of the whole tower. In this paper, an artificial pollution test synchronous observation platform with an infrared and visible light imager, leakage current, and voltage measurement was built to observe the dry band formation and partial discharge at the simplified rod–plate connections in the composite towers. Then, the electric field simulation of the rod–plate connection specimen showed the current density distribution. When combining the test and the simulation, it was concluded that the cause of the partial discharge was the distortion of the current density and, thus, measures to suppress the partial discharge at the rod–plate connections were proposed. Finally, it was verified that the measures can improve the current density distortion phenomenon, delay dry band formation, and effectively suppress the partial discharge at the rod–plate connections under the same test conditions.

Suggested Citation

  • Jinpeng Hao & Jinzhu Huang & Ziyi Fang & Xiao He & Qiang Wu & Xiaolong Gu & Yu Wang & Hong Wu, 2023. "Suppression Measures of Partial Discharge at Rod–Plate Connection in Composite Tower," Energies, MDPI, vol. 16(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3712-:d:1133475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marc-Alain Andoh & Kone Gbah & Christophe Volat, 2022. "Development of a Simple Experimental Setup for the Study of the Formation of Dry Bands on Composite Insulators," Energies, MDPI, vol. 15(14), pages 1-17, July.
    2. Da Zhang & Fancui Meng, 2019. "Research on the Interrelation between Temperature Distribution and Dry Band on Wet Contaminated Insulators," Energies, MDPI, vol. 12(22), pages 1-14, November.
    3. Mohammed El Amine Slama & Maurizio Albano & Abderrahmane Manu Haddad & Ronald T. Waters & Oliver Cwikowski & Ibrahim Iddrissu & Jon Knapper & Oliver Scopes, 2021. "Monitoring of Dry Bands and Discharge Activities at the Surface of Textured Insulators with AC Clean Fog Test Conditions," Energies, MDPI, vol. 14(10), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Da Zhang & Shuailin Chen, 2020. "Intelligent Recognition of Insulator Contamination Grade Based on the Deep Learning of Ultraviolet Discharge Image Information," Energies, MDPI, vol. 13(19), pages 1-16, October.
    2. Hao Yang & Haotian Zhang & Wen Cao & Xuanxiang Zhao & Ran Wen & Junping Zhao & Shengwu Tan & Pengchao Wang, 2021. "Optical Diagnostic Characterization of the Local Arc on Contaminated Insulation Surface at Low Pressure," Energies, MDPI, vol. 14(19), pages 1-11, September.
    3. Issouf Fofana & Stephan Brettschneider, 2022. "Outdoor Insulation and Gas-Insulated Switchgears," Energies, MDPI, vol. 15(21), pages 1-7, November.
    4. Mohammed El Amine Slama & Adnan Krzma & Maurizio Albano & Abderrahmane Manu Haddad, 2022. "Experimental Study and Modeling of the Effect of ESDD/NSDD on AC Flashover of SiR Outdoor Insulators," Energies, MDPI, vol. 15(10), pages 1-14, May.
    5. Marc-Alain Andoh & Kone Gbah & Christophe Volat, 2022. "Development of a Simple Experimental Setup for the Study of the Formation of Dry Bands on Composite Insulators," Energies, MDPI, vol. 15(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3712-:d:1133475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.