IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3671-d1131856.html
   My bibliography  Save this article

Experimental and Numerical Studies of the Aerodynamics of Stationary Two-Shaft Gas Turbine Exhaust System

Author

Listed:
  • Viktor Chernikov

    (Institute of Energy, Peter The Great Saint-Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

  • Elena Semakina

    (Institute of Energy, Peter The Great Saint-Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

Abstract

In this study, the aerodynamic performance of the exhaust system of a two-shaft gas turbine was investigated experimentally and numerically. The investigation focused on the system “Turbine Stage-Diffuser—Collector Box” and aimed to examine the impact of inlet conditions and geometry particularities on the efficiency of the exhaust system. The experiments were conducted on the Test Ring ET4 (Experimental Turbine-4) at the Peter the Great St.Petersburg Polytechnic University, which was equipped with a special diversion channel to examine the non-axisymmetric outlet of the exhaust duct. The collector box was designed to rotate by 180 degrees around the turbine axis to investigate its impact on the system’s performance. Flow traversing parameters were measured with the five-channel pneumatic pressure probes, and numerical simulations were performed with CFX 15.0. The RANS (Reynolds-averaged Navier–Stokes) equations were closed with the SST (k-ω) turbulence model (Shear Stress Transport model). The study concluded that the RANS SST model predicts the flow in the diffuser before the struts accurately. However, downstream the struts, the CFD (Computer fluid dynamic) results over-predicted the exhaust diffuser pressure recovery coefficient by 14% due to the complex vortex structure of the turbulent flow, which the Averaged Navier–Stokes equations did not resolve. The study highlights the importance of considering the last stage of the turbine, diffuser, and collector box as an integrated system when investigating the aerodynamics of exhaust ducts. The study also emphasizes the impact of geometry and inlet conditions on the exhaust diffuser’s performance and efficiency. The results of this study can be used to optimize the design of the exhaust system of two-shaft gas turbines and improve their thermal efficiency. The integrated approach of combining experimental and numerical methods can provide a detailed and reliable flow picture and can be used for future research in this area.

Suggested Citation

  • Viktor Chernikov & Elena Semakina, 2023. "Experimental and Numerical Studies of the Aerodynamics of Stationary Two-Shaft Gas Turbine Exhaust System," Energies, MDPI, vol. 16(9), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3671-:d:1131856
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3671/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3671/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3671-:d:1131856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.