IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3653-d1131383.html
   My bibliography  Save this article

Interpretable Predictive Modeling of Tight Gas Well Productivity with SHAP and LIME Techniques

Author

Listed:
  • Xianlin Ma

    (College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China)

  • Mengyao Hou

    (College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China)

  • Jie Zhan

    (College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China)

  • Zhenzhi Liu

    (College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China)

Abstract

Accurately predicting well productivity is crucial for optimizing gas production and maximizing recovery from tight gas reservoirs. Machine learning (ML) techniques have been applied to build predictive models for the well productivity, but their high complexity and low interpretability can hinder their practical application. This study proposes using interpretable ML solutions, SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME), to provide explicit explanations of the ML prediction model. The study uses data from the Eastern Sulige tight gas field in the Ordos Basin, China, containing various geological and engineering factors. The results show that the gradient boosting decision tree model exhibits superior predictive performance compared to other ML models. The global interpretation using SHAP provides insights into the overall impact of these factors, while the local interpretation using SHAP and LIME offers individualized explanations of well productivity predictions. These results can facilitate improvements in well operations and field development planning, providing a better understanding of the underlying physical processes and supporting more informed and effective decision-making. Ultimately, this study demonstrates the potential of interpretable ML solutions to address the challenges of forecasting well productivity in tight gas reservoirs and enable more efficient and sustainable gas production.

Suggested Citation

  • Xianlin Ma & Mengyao Hou & Jie Zhan & Zhenzhi Liu, 2023. "Interpretable Predictive Modeling of Tight Gas Well Productivity with SHAP and LIME Techniques," Energies, MDPI, vol. 16(9), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3653-:d:1131383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3653/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3653/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Lian & Yao, Yuedong & Wang, Kongjie & Adenutsi, Caspar Daniel & Zhao, Guoxiang & Lai, Fengpeng, 2022. "Hybrid application of unsupervised and supervised learning in forecasting absolute open flow potential for shale gas reservoirs," Energy, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
    2. Zhou, Guangzhao & Duan, Xianggang & Chang, Jin & Bo, Yu & Huang, Yuhan, 2023. "Investigation of CH4/CO2 competitive adsorption-desorption mechanisms for enhanced shale gas production and carbon sequestration using nuclear magnetic resonance," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3653-:d:1131383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.