IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3641-d1131209.html
   My bibliography  Save this article

Quantitative Analysis of Surface Partial Discharges through Radio Frequency and Ultraviolet Signal Measurements

Author

Listed:
  • Michał Kozioł

    (Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland)

  • Łukasz Nagi

    (Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland)

  • Tomasz Boczar

    (Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland)

  • Zbigniew Nadolny

    (Institute of Electrical Power Engineering, Poznan University of Technology, 60-965 Poznań, Poland)

Abstract

In high voltage insulation systems, dielectric materials may be exposed to partial discharges (PD), which can lead to equipment failures and safety hazards. Therefore, it is crucial to detect and characterize PD activity on the surface of insulation systems. Techniques such as radio frequency signal analysis and ultraviolet radiation emission detection are commonly used for this purpose. In this research study, an analysis was conducted on the signals emitted by surface PD in the radio frequency and ultraviolet radiation emission ranges. The goal was to indicate possible directions for further basic research aimed at building a knowledge base and improving measurement methods. The analysis confirmed that radio frequency and ultraviolet signal analysis can provide important information about the activity and location of PD on the surface, including the intensity and nature of PD. The experimental investigation presented in this paper provides valuable insights into the potential for using radio frequency and ultraviolet signals to enhance diagnostic techniques for monitoring the condition of insulation systems in high-voltage equipment.

Suggested Citation

  • Michał Kozioł & Łukasz Nagi & Tomasz Boczar & Zbigniew Nadolny, 2023. "Quantitative Analysis of Surface Partial Discharges through Radio Frequency and Ultraviolet Signal Measurements," Energies, MDPI, vol. 16(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3641-:d:1131209
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3641/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3641/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Tenbohlen & Chandra Prakash Beura & Wojciech Sikorski & Ricardo Albarracín Sánchez & Bruno Albuquerque de Castro & Michael Beltle & Pascal Fehlmann & Martin Judd & Falk Werner & Martin Siegel, 2023. "Frequency Range of UHF PD Measurements in Power Transformers," Energies, MDPI, vol. 16(3), pages 1-21, January.
    2. Sinda Kaziz & Mohamed Hadj Said & Antonino Imburgia & Bilel Maamer & Denis Flandre & Pietro Romano & Fares Tounsi, 2023. "Radiometric Partial Discharge Detection: A Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Florkowski & Maciej Kuniewski, 2023. "Partial Discharge-Originated Deterioration of Insulating Material Investigated by Surface-Resistance and Potential Mapping," Energies, MDPI, vol. 16(16), pages 1-17, August.
    2. Zbigniew Nadolny, 2023. "Design and Optimization of Power Transformer Diagnostics," Energies, MDPI, vol. 16(18), pages 1-7, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haresh Kumar & Muhammad Shafiq & Kimmo Kauhaniemi & Mohammed Elmusrati, 2024. "A Review on the Classification of Partial Discharges in Medium-Voltage Cables: Detection, Feature Extraction, Artificial Intelligence-Based Classification, and Optimization Techniques," Energies, MDPI, vol. 17(5), pages 1-31, February.
    2. Marek Florkowski, 2024. "Comparison of Effects of Partial Discharge Echo in Various High-Voltage Insulation Systems," Energies, MDPI, vol. 17(20), pages 1-17, October.
    3. Marek Florkowski, 2023. "Effect of Interplay between Parallel and Perpendicular Magnetic and Electric Fields on Partial Discharges," Energies, MDPI, vol. 16(13), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3641-:d:1131209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.