IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3608-d1129809.html
   My bibliography  Save this article

Combustion of Lean Methane/Propane Mixtures with an Active Prechamber Engine in Terms of Various Fuel Distribution

Author

Listed:
  • Ireneusz Pielecha

    (Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Filip Szwajca

    (Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

Abstract

The possibilities for reducing the fuel consumption of internal combustion engines focus mainly on developing combustion systems, as one such solution is a two-stage combustion system using jet ignition. The combustion of gaseous mixtures with a high excess air ratio leads to an increase in overall efficiency and a reduction in the emissions of selected exhaust components. In such a convention, gas combustion studies were conducted in the methane/propane configuration. Using an active prechamber where spark plugs were placed and direct injection through a check valve, the fuel dose was minimized into the prechamber. The tests were conducted for a constant center of combustion (CoC). The combustion process in both the prechamber and main chamber was analyzed using a test stand equipped with a 0.5 dm 3 single-cylinder engine. The engine was controlled by varying the fuel supply to the prechamber and main chamber in excess air ratio λ = 1.3–1.8. The study analyzed thermodynamic indices such as the combustion pressure in both chambers, based on which the SoC in both chambers, the rate and amount of heat released, AI05, AI90 and, consequently, the indicated efficiency were determined. Based on the results, it was found that the use of CH 4 /C 3 H 8 combination degraded the thermodynamic indicators of combustion more than using only the base gas (methane). In addition, the stability of the engine’s operation was decreased. The advantage of using propane for the prechamber is to obtain more beneficial ecological indicators. For the single-fuel system, a maximum indicated efficiency of more than 40% was obtained, while with the use of propane for the prechamber, a maximum of 39.3% was achieved.

Suggested Citation

  • Ireneusz Pielecha & Filip Szwajca, 2023. "Combustion of Lean Methane/Propane Mixtures with an Active Prechamber Engine in Terms of Various Fuel Distribution," Energies, MDPI, vol. 16(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3608-:d:1129809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weronika Gracz & Damian Marcinkowski & Wojciech Golimowski & Filip Szwajca & Maria Strzelczyk & Jacek Wasilewski & Paweł Krzaczek, 2021. "Multifaceted Comparison Efficiency and Emission Characteristics of Multi-Fuel Power Generator Fueled by Different Fuels and Biofuels," Energies, MDPI, vol. 14(12), pages 1-19, June.
    2. Maxime Jean & Pascal Granier & Thomas Leroy, 2022. "Combustion Stability Control Based on Cylinder Pressure for High Efficiency Gasoline Engines," Energies, MDPI, vol. 15(7), pages 1-10, March.
    3. Ireneusz Pielecha & Filip Szwajca, 2023. "Lean Methane Mixtures in Turbulent Jet Ignition Combustion System," Energies, MDPI, vol. 16(3), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ireneusz Pielecha & Filip Szwajca, 2023. "Two- and Three-Stage Natural Gas Combustion System—Experimental Comparative Analysis," Energies, MDPI, vol. 16(9), pages 1-15, April.
    2. Grzegorz Koszalka & Paweł Krzaczek, 2022. "Energy Losses Related to Ring Pack Wear in Gasoline Car Engine," Energies, MDPI, vol. 15(24), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3608-:d:1129809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.