IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3603-d1129699.html
   My bibliography  Save this article

A High Conversion Ratio DC–DC Boost Converter with Continuous Output Current Using Dual-Current Flows

Author

Listed:
  • Hwa-Soo Kim

    (Department of Electrical Engineering, Ulsan National Institute of Science & Technology, Ulsan 44919, Republic of Korea)

  • Se-Un Shin

    (Department of Electrical Engineering, Ulsan National Institute of Science & Technology, Ulsan 44919, Republic of Korea)

Abstract

Recently, the demand for small, low-cost electronics has increased the use of cost-effective tiny inductors in power-management ICs (PMICs). However, the conduction loss caused by the parasitic DC resistance ( R DCR ) of a small inductor leads to low efficiency, which reduces the battery usage time and may also cause thermal problems in mobile devices. In particular, these issues become critical when a conventional boost converter (CBC) is used to achieve high-output voltage due to the large inductor current. In addition, as the output voltage increases, a number of issues become more serious, such as large output voltage ripple, conversion-ratio limit, and overlap loss. To solve these issues, this paper proposed a high-voltage boost converter with dual-current flows (HVDF). The proposed HVDF can achieve a higher efficiency than a CBC by reducing the total conduction loss in heavy load current conditions with a small inductor. Moreover, because in the HVDF, the current delivered to the output becomes continuous, unlike in the CBC with its discontinuous output delivery current, the output voltage ripple can be significantly reduced. Also, the conversion gain of the HVDF is less sensitive to R DCR than that of the CBC. To further increase the conversion gain, a time-interleaved charge pump can be connected in series with the HVDF (HVDFCP) to achieve higher output voltage beyond the limit of the conversion gain in the HVDF while maintaining the advantages of a low inductor current and small output voltage ripple. Simulations using PSIM were performed along with a detailed numerical analysis of the conduction losses in the proposed structures. The simulation results were discussed and compared with those of the conventional structures.

Suggested Citation

  • Hwa-Soo Kim & Se-Un Shin, 2023. "A High Conversion Ratio DC–DC Boost Converter with Continuous Output Current Using Dual-Current Flows," Energies, MDPI, vol. 16(8), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3603-:d:1129699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hassan Saif & Yongmin Lee & Hyeonji Lee & Minsun Kim & Muhammad Bilawal Khan & Jung-Hoon Chun & Yoonmyung Lee, 2018. "A Wide Load Current and Voltage Range Switched Capacitor DC–DC Converter with Load Dependent Configurability for Dynamic Voltage Implementation in Miniature Sensors," Energies, MDPI, vol. 11(11), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Se-Un Shin, 2019. "An Analysis of Non-Isolated DC-DC Converter Topologies with Energy Transfer Media," Energies, MDPI, vol. 12(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3603-:d:1129699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.