IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3544-d1127672.html
   My bibliography  Save this article

Adaptation of Inductive Power Transfer to Small Household Appliances That Can Operate on Induction Heating Cooktops: Wireless Electric Kettle

Author

Listed:
  • Canberk Sezer

    (Electrical Engineering Department, Yildiz Technical University, 34349 Istanbul, Türkiye)

  • Nihan Altintas

    (Electrical Engineering Department, Yildiz Technical University, 34349 Istanbul, Türkiye)

Abstract

In this paper, an inductive power transfer (IPT) system without compensation elements is presented for small house appliances. The proposed system’s transmitter side is an independent induction heating cooktop. IPT can be achieved when the kettle with the receiving coils is placed on the transmitter coil. The coils are designed with a high coupling coefficient. The magnetic system model consisting of aligned transmitter and receiver coils is created in the Maxwell program. In the created model, the analysis depends on the air gap and frequency, which are the variables that affect the wireless power transfer. The electronic circuit simulation uses the coil model to examine the system’s dynamic behavior. The design of the transmitter/receiver coils of the IPT system is made with a cylindrical coil with a diameter of 145 mm, taking into account that it is compatible with the dimensions of the existing kettle and induction heating cooktops coil. A half-bridge series resonant converter circuit is used to adjust the power transferred to the load. To verify the simulation results and test the designed system, an experimental circuit using a 2200 W kettle is carried out. In the experiments, the air gap between the coils is kept constant at 7 mm, and measurements are taken for different powers. Experimental results confirm the magnetic model and simulation results. As a result, wireless power transfer is realized in a wide range without loss of performance in the kettle. System efficiency is greater than the 90% specified in the Ki cordless kitchen standard, and the harmonic currents drawn from the mains are lower than the values determined by the IEC 61000-3-2 standard.

Suggested Citation

  • Canberk Sezer & Nihan Altintas, 2023. "Adaptation of Inductive Power Transfer to Small Household Appliances That Can Operate on Induction Heating Cooktops: Wireless Electric Kettle," Energies, MDPI, vol. 16(8), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3544-:d:1127672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Supapong Nutwong & Anawach Sangswang & Sumate Naetiladdanon & Ekkachai Mujjalinvimut, 2018. "A Novel Output Power Control of Wireless Powering Kitchen Appliance System with Free-Positioning Feature," Energies, MDPI, vol. 11(7), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaochen Zhang & Xiaona Wang & Pan Sun & Jun Sun & Jin Cai, 2023. "Mutual and Self-Inductance Variation in Misaligned Coupler of Inductive Power Transfer System: Mechanism, Influence, and Solutions," Energies, MDPI, vol. 16(13), pages 1-16, July.
    2. Krystian Frania & Kamil Kierepka & Marcin Kasprzak & Piotr Zimoch, 2024. "Single Three-Phase Inverter for Dual-Frequency Induction Heating," Energies, MDPI, vol. 17(11), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongsheng Yang & Sokhui Won & Jiangwei Tian & Zixin Cheng & Jongho Kim, 2019. "A Method of Estimating Mutual Inductance and Load Resistance Using Harmonic Components in Wireless Power Transfer System," Energies, MDPI, vol. 12(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3544-:d:1127672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.