IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2877-d1102678.html
   My bibliography  Save this article

Salt Ion Diffusion Behavior and Adsorption Characteristics of Fracturing Fluid in Tight Sandstone Gas Reservoir

Author

Listed:
  • Xueping Zhang

    (Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gas Field Company, Chengdu 610213, China
    Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610213, China)

  • Youquan Liu

    (Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gas Field Company, Chengdu 610213, China
    Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610213, China)

  • Yuzhou Liu

    (Development Department, PetroChina Southwest Oil & Gas Field Company, Chengdu 610066, China)

  • Chuanrong Zhong

    (College of Energy, Chengdu University of Technology, Chengdu 610059, China)

  • Pengfei Zhang

    (Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gas Field Company, Chengdu 610213, China
    Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610213, China)

Abstract

The degree of salinity in the hydraulic fracturing rejection fluid of the Shaximiao reservoir in the central Sichuan Basin is high, and the underlying mechanism causing this salinity is not clearly understood. We evaluated the rock structure of tight sandstone, including rock composition, pore structure, ion diffusion, and adsorption behavior, to determine how the rock structure influences the mechanism of the sandstone’s interaction with the fracturing fluid. X-ray diffraction revealed that the rock mineral fraction has a significant clay mineral concentration. The results of linear swelling experiments revealed that the water sensitivity of tight sandstone reservoirs exhibits moderately robust characteristics. The time required for salt ion diffusion stabilization is much longer than that required for self-imbibition stabilization, and the diffusion of salt ions is almost log-linear with time after imbibition stabilization. The diffusion rates of salt ions were determined for different single minerals and particle sizes, with clay minerals and particle sizes controlling the diffusion rates. The samples were treated with different concentrations of KCl and acrylamide polymer solutions, and both the pore size distribution and pore throat properties were characterized by low-temperature nitrogen adsorption. Although the adsorption isotherms of both KCl and polymers are consistent with the Langmuir model, their adsorption mechanisms acting on tight sandstone and the effect of adsorption on the pore throat structure are inconsistent. The adsorption of potassium chloride enhances the rock’s pore throat diameter and permeability by increasing the uniformity of the pore throat by electrostatic adsorption with clay particles. However, polymer adsorption reduces the pore diameter of the rock and forms a thin film that obstructs the pore throat, complicating the pore throat and weakening its permeability. This research has led to a greater comprehension of the ion diffusion characteristics of the tight sandstone in the Shaximiao reservoir and the adsorption mechanism on the pore structure of the rock.

Suggested Citation

  • Xueping Zhang & Youquan Liu & Yuzhou Liu & Chuanrong Zhong & Pengfei Zhang, 2023. "Salt Ion Diffusion Behavior and Adsorption Characteristics of Fracturing Fluid in Tight Sandstone Gas Reservoir," Energies, MDPI, vol. 16(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2877-:d:1102678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaohong Li & Zhiyong Gao & Siyi Fang & Chao Ren & Kun Yang & Fuyong Wang, 2019. "Fractal Characterization of Nanopore Structure in Shale, Tight Sandstone and Mudstone from the Ordos Basin of China Using Nitrogen Adsorption," Energies, MDPI, vol. 12(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Kalak & Ryszard Cierpiszewski & Małgorzata Ulewicz, 2021. "High Efficiency of the Removal Process of Pb(II) and Cu(II) Ions with the Use of Fly Ash from Incineration of Sunflower and Wood Waste Using the CFBC Technology," Energies, MDPI, vol. 14(6), pages 1-22, March.
    2. Xing Zeng & Weiqiang Li & Jue Hou & Wenqi Zhao & Yunyang Liu & Yongbo Kang, 2022. "Fractal Characteristics of Pore-Throats Structure and Quality Evaluation of Carbonate Reservoirs in Eastern Margin of Pre-Caspian Basin," Energies, MDPI, vol. 15(17), pages 1-13, August.
    3. Jianchao Cai & Zhien Zhang & Qinjun Kang & Harpreet Singh, 2019. "Recent Advances in Flow and Transport Properties of Unconventional Reservoirs," Energies, MDPI, vol. 12(10), pages 1-5, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2877-:d:1102678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.