IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2708-d1096920.html
   My bibliography  Save this article

A Physics-Based Modelling and Control of Greenhouse System Air Temperature Aided by IoT Technology

Author

Listed:
  • Beatrice Faniyi

    (School of Water, Energy, Environment and Agrifood, Cranfield University, Cranfield MK43 0AL, UK)

  • Zhenhua Luo

    (School of Water, Energy, Environment and Agrifood, Cranfield University, Cranfield MK43 0AL, UK)

Abstract

The need to reduce energy consumption in greenhouse production has grown. Thermal heating demand alone accounts for 80% of conventional greenhouse energy consumption; this significantly reduces production profit. Since microclimate affects crop metabolic processes and output, it is essential to monitor and control it to achieve both quantity and quality production with minimum energy consumption for maximum profit. The Internet of Things (IoT) is an evolving technology for monitoring and controlling environments that have recently been adopted to boost greenhouse efficiency in many applications by integrating hardware and software solutions; therefore, its adoption is thus critical in enabling greenhouse energy consumption minimisation. The first objective of this study is to improve and validate a greenhouse dynamic air temperature model required to simulate or predict indoor temperature. To achieve the first objective, therefore, an existing model was enhanced and a closed loop test experimental data from the IoT cloud-based control system platform deployed in the prototype greenhouse built in Cranfield University was used to validate the model using an optimisation-based model fitting approach. The second goal is to control the greenhouse air temperature in simulation using relatively simple PI and on-off control strategies to maintain the grower’s desired setpoint irrespective of the inevitable disturbances and to verify the potential of the controllers in minimising the total energy input to the greenhouse. For the second objective, the simulation results showed that the two controllers maintained the desired setpoint; however, the on-off strategy retained a sustainable oscillation, and the tuned PI effectively maintained the desired temperature, although the average energy used by the controllers is the same.

Suggested Citation

  • Beatrice Faniyi & Zhenhua Luo, 2023. "A Physics-Based Modelling and Control of Greenhouse System Air Temperature Aided by IoT Technology," Energies, MDPI, vol. 16(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2708-:d:1096920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chiara Bersani & Marco Fossa & Antonella Priarone & Roberto Sacile & Enrico Zero, 2021. "Model Predictive Control versus Traditional Relay Control in a High Energy Efficiency Greenhouse," Energies, MDPI, vol. 14(11), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurora González-Vidal & José Mendoza-Bernal & Alfonso P. Ramallo & Miguel Ángel Zamora & Vicente Martínez & Antonio F. Skarmeta, 2022. "Smart Operation of Climatic Systems in a Greenhouse," Agriculture, MDPI, vol. 12(10), pages 1-18, October.
    2. Gustavo Cevallos & Marco Herrera & Ramon Jaimez & Hanna Aboukheir & Oscar Camacho, 2022. "A Practical Hybrid Control Approach for a Greenhouse Microclimate: A Hardware-in-the-Loop Implementation," Agriculture, MDPI, vol. 12(11), pages 1-28, November.
    3. Chiara Bersani & Carmelina Ruggiero & Roberto Sacile & Abdellatif Soussi & Enrico Zero, 2022. "Internet of Things Approaches for Monitoring and Control of Smart Greenhouses in Industry 4.0," Energies, MDPI, vol. 15(10), pages 1-30, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2708-:d:1096920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.